Ségurel Laure, Ulaganathan Thirumalai Selvi, Mathieu Sophie, Loiodice Mélanie, Poulet Laurent, Drouillard Sophie, Cygler Miroslaw, Helbert William
Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS - UCB Lyon 1, Villeurbanne cedex, France.
Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
PLoS One. 2025 Aug 1;20(8):e0329457. doi: 10.1371/journal.pone.0329457. eCollection 2025.
The human gut microbiota can acquire new catabolic functions by integrating genetic material coming from the environment, for example from food-associated bacteria. An illustrative example of that is the acquisition by the human gut microbiota of Asian populations of genes coming from marine bacteria living on the surface of red algae that are incorporated into their diet when eating maki-sushi. To better understand the function and evolution of this set of algal genes corresponding to a polysaccharide utilization locus (PUL) dedicated to the degradation of porphyran, the main polysaccharide of the red algae Porphyra sp., we characterized it biochemically, assessed its genetic diversity and investigated its geographical distribution in large public worldwide datasets. We first demonstrated that both methylated and unmethylated fractions are catabolized without the help of external enzymes. By scanning the genomic data of more than 10,000 cultivated isolates as well as metagenomic data from more than 14,000 worldwide individuals, we found that the porphyran PUL is present in 17 different Phocaeicola/Bacteroides species (including 12 species that were not known to carry it), as well as in two Parabacteroides species and two genera from the Bacillota phylum, highlighting multiple lateral transfers within the gut microbiota. We then analyzed the prevalence of this porphyran PUL across 32 countries and showed that it exists in appreciable frequencies (>1%) only in East Asia (Japan, China, Korea). Finally, we identified three major PUL haplotypes which frequencies significantly differ between these East Asian countries. This geographic structure likely reflects the rate of bacterial horizontal transmission between individuals.
人类肠道微生物群可通过整合来自环境的遗传物质(例如来自与食物相关的细菌)来获得新的分解代谢功能。一个典型的例子是亚洲人群的肠道微生物群获得了来自生活在红藻表面的海洋细菌的基因,这些基因在食用寿司时被纳入他们的饮食中。为了更好地理解这组与紫菜多糖利用位点(PUL)相对应的藻类基因的功能和进化,该位点专门用于降解紫菜(红藻紫菜属的主要多糖),我们对其进行了生化表征,评估了其遗传多样性,并在全球范围内的大型公共数据集中研究了其地理分布。我们首先证明,甲基化和未甲基化部分在没有外部酶帮助的情况下都能被分解代谢。通过扫描10000多个培养菌株的基因组数据以及来自全球14000多个个体的宏基因组数据,我们发现紫菜PUL存在于17种不同的嗜鳍杆菌属/拟杆菌属物种中(包括12种以前未知携带该基因的物种),以及两种副拟杆菌属物种和芽孢杆菌门的两个属中,这突出了肠道微生物群中的多次横向转移。然后,我们分析了紫菜PUL在32个国家的流行情况,结果表明它仅在东亚(日本、中国、韩国)以相当高的频率(>1%)存在。最后,我们确定了三种主要的PUL单倍型,这些单倍型在这些东亚国家的频率存在显著差异。这种地理结构可能反映了个体之间细菌水平传播的速率。