Suppr超能文献

识别复杂性状的多组学致因及因果途径。

Identifying Multi-Omics Causers and Causal Pathways for Complex Traits.

作者信息

Qin Huaizhen, Niu Tianhua, Zhao Jinying

机构信息

Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, United States.

Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, United States.

出版信息

Front Genet. 2019 Feb 21;10:110. doi: 10.3389/fgene.2019.00110. eCollection 2019.

Abstract

The central dogma of molecular biology delineates a unidirectional causal flow, i.e., DNA → RNA → protein → trait. Genome-wide association studies, next-generation sequencing association studies, and their meta-analyses have successfully identified ~12,000 susceptibility genetic variants that are associated with a broad array of human physiological traits. However, such conventional association studies ignore the mediate causers (i.e., RNA, protein) and the unidirectional causal pathway. Such studies may not be ideally powerful; and the genetic variants identified may not necessarily be genuine causal variants. In this article, we model the central dogma by a mediate causal model and analytically prove that the more remote an omics level is from a physiological trait, the smaller the magnitude of their correlation is. Under both random and extreme sampling schemes, we numerically demonstrate that the proteome-trait correlation test is more powerful than the transcriptome-trait correlation test, which in turn is more powerful than the genotype-trait association test. In conclusion, integrating RNA and protein expressions with DNA data and causal inference are necessary to gain a full understanding of how genetic causal variants contribute to phenotype variations.

摘要

分子生物学的中心法则描述了一种单向的因果流,即DNA→RNA→蛋白质→性状。全基因组关联研究、新一代测序关联研究及其荟萃分析已成功鉴定出约12000个与广泛的人类生理性状相关的易感基因变异。然而,此类传统关联研究忽略了中间因果因素(即RNA、蛋白质)和单向因果途径。此类研究可能并非理想地强大;而且所鉴定的基因变异不一定是真正的因果变异。在本文中,我们通过一个中间因果模型对中心法则进行建模,并通过分析证明,一个组学水平距离生理性状越远,它们之间的相关性程度就越小。在随机和极端抽样方案下,我们通过数值证明蛋白质组-性状相关性检验比转录组-性状相关性检验更具效力,而转录组-性状相关性检验又比基因型-性状关联检验更具效力。总之,整合RNA和蛋白质表达与DNA数据以及因果推断对于全面理解遗传因果变异如何导致表型变异是必要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c99a/6393387/da5a72f81196/fgene-10-00110-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验