Suppr超能文献

在动静脉环模型中重组 eADF4(C16) 蜘蛛丝基质的内在血管化。

Intrinsic Vascularization of Recombinant eADF4(C16) Spider Silk Matrices in the Arteriovenous Loop Model.

机构信息

Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.

Biopolymer Processing, Faculty of Engineering Science, University of Bayreuth, Bayreuth, Germany.

出版信息

Tissue Eng Part A. 2019 Nov;25(21-22):1504-1513. doi: 10.1089/ten.TEA.2018.0360. Epub 2019 May 2.

Abstract

The surgically induced angiogenesis by means of arteriovenous (AV) loops represents a powerful method to significantly enhance vascularization of biomaterials. Regarding tissue engineering applications, spider silk is a promising biomaterial with a good biocompatibility and slow biodegradation. This study aims at investigating vascularization as well as tissue formation of fibrous matrices made of electro-spun (ES) or wet-spun (WS) engineered ADF4(C16) spider silks in the rat AV loop model. Either ES or WS spider silk fibrous matrices were filled into Teflon chambers. Intrinsic vascularization was induced by means of an AV loop. After 4 weeks of vascularization, tissue formation and biocompatibility were analyzed. Regardless of their significantly differing fiber diameters, both ES and WS eADF4(C16) fiber matrices displayed a good biocompatibility and initiated tissue formation as well as vessel formation. Both matrices demonstrated partial vascularization originating from the AV loop, with more vessels in spider silk matrices with lower fiber diameters. We were able to demonstrate intrinsic vascularization of spider silk fibrous matrices by means of the AV loop. Moreover, our study indicates that the adjustment of the fiber diameter of engineered spider silks enables new possibilities to optimize vascularization. Impact Statement Spider silk is a promising biomaterial demonstrating excellent biocompatibility and biodegradation. Biotechnology allows the high-volume production of recombinant spider silk proteins, such as eADF4(C16), with the required purity for biomedical applications. In this study, eADF4(C16) fibrous matrices were produced by either electro- or wet-spinning, resulting in different fiber diameters. Forming an arteriovenous fistula, surgical vascularization of the scaffolds was induced. After 4 weeks, both silks demonstrated a good biocompatibility and tissue formation. The thinner electro-spun fibers displayed a faster biodegradation and vascularization, indicating that the adjustment of the fiber diameter is a valuable tool to fine-tune vascularization and biodegradation.

摘要

通过动静脉(AV)环诱导的手术血管生成是显著增强生物材料血管化的有力方法。在组织工程应用中,蜘蛛丝是一种具有良好生物相容性和缓慢降解性的有前途的生物材料。本研究旨在研究电纺(ES)或湿法纺丝(WS)工程化 ADF4(C16)蜘蛛丝纤维基质在大鼠 AV 环模型中的血管化和组织形成。ES 或 WS 蜘蛛丝纤维基质被填充到特氟龙室中。通过 AV 环诱导内在血管生成。血管化 4 周后,分析组织形成和生物相容性。无论其纤维直径差异显著,ES 和 WS eADF4(C16)纤维基质均表现出良好的生物相容性,并引发组织形成和血管形成。两种基质均显示出源自 AV 环的部分血管化,纤维直径较低的蜘蛛丝基质具有更多的血管。我们能够通过 AV 环证明蜘蛛丝纤维基质的内在血管化。此外,我们的研究表明,调整工程化蜘蛛丝的纤维直径为优化血管化提供了新的可能性。 影响陈述 蜘蛛丝是一种有前途的生物材料,具有出色的生物相容性和生物降解性。生物技术允许大量生产重组蜘蛛丝蛋白,如 eADF4(C16),以满足生物医学应用的要求。在这项研究中,通过电纺或湿法纺丝生产 eADF4(C16)纤维基质,导致纤维直径不同。通过形成动静脉瘘,支架的手术血管化被诱导。4 周后,两种丝均表现出良好的生物相容性和组织形成。较细的电纺纤维显示出更快的生物降解和血管化,表明调整纤维直径是微调血管化和生物降解的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验