Suppr超能文献

构建定量结构-性质关系(QSPR)模型。

Building a Quantitative Structure-Property Relationship (QSPR) Model.

作者信息

Clark Robert D, Daga Pankaj R

机构信息

Simulations Plus, Inc., Lancaster, CA, USA.

出版信息

Methods Mol Biol. 2019;1939:139-159. doi: 10.1007/978-1-4939-9089-4_8.

Abstract

Knowing the physicochemical and general biochemical properties of a compound is critical to understanding how it behaves in different biological environments and to anticipating what is likely to happen in situations where that behavior cannot be measured directly. Quantitative structure-property relationship (QSPR) models provide a way to predict those properties even before a compound has been synthesized simply by knowing what its structure would be. This chapter describes a general workflow for compiling the data upon which a useful QSPR model is built, curating it, evaluating that model's performance, and then analyzing the predictive errors with an eye toward identifying systematic errors in the input data. The focus here is on models for the absorption, distribution, metabolism, and excretion (ADME) properties of drugs and toxins, but the considerations explored are general and applicable to any QSPR.

摘要

了解一种化合物的物理化学和一般生化特性对于理解它在不同生物环境中的行为以及预测在无法直接测量该行为的情况下可能发生的事情至关重要。定量结构-性质关系(QSPR)模型提供了一种方法,即使在化合物尚未合成之前,只需知道其结构,就能预测这些性质。本章描述了一个通用的工作流程,用于收集构建有用的QSPR模型所需的数据、对其进行整理、评估该模型的性能,然后分析预测误差,以识别输入数据中的系统误差。这里的重点是药物和毒素的吸收、分布、代谢和排泄(ADME)性质的模型,但所探讨的考虑因素是一般性的,适用于任何QSPR。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验