Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA.
Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois, USA.
Stem Cells Transl Med. 2019 Jul;8(7):658-670. doi: 10.1002/sctm.18-0160. Epub 2019 Mar 8.
Patients suffering from acute or sustained thrombocytopenia require platelet transfusions, which are entirely donor-based and limited by challenges related to storage and fluctuating supply. Developing cell-culture technologies will enable ex vivo and donor-independent platelet production. However, critical advancements are needed to improve scalability and increase megakaryocyte (Mk) culture productivity. To address these needs, we evaluated Mk production from mobilized peripheral blood CD34 cells cultured on a commercially available gas-permeable silicone rubber membrane, which provides efficient gas exchange, and investigated the use of fed-batch media dilution schemes. Starting with a cell-surface density of 40 × 10 CD34 cells per cm (G40D), culturing cells on the membrane for the first 5 days and employing media dilutions yielded 39 ± 19 CD41 CD42b Mks per input CD34 cell by day 11-a 2.2-fold increase compared with using standard culture surfaces and full media exchanges. By day 7, G40D conditions generated 1.5-fold more CD34 cells and nearly doubled the numbers of Mk progenitors. The increased number of Mk progenitors coupled with media dilutions, potentially due to the retention of interleukin (IL)-3, increased Mk production in G40D. Compared with controls, G40D had higher viability, yielded threefold more Mks per milliliter of media used and exhibited lower mean ploidy, but had higher numbers of high-ploidy Mks. Finally, G40D-Mks produced proplatelets and platelet-like-particles that activate and aggregate upon stimulation. These results highlight distinct improvements in Mk cell-culture and demonstrate how new technologies and techniques are needed to enable clinically relevant production of Mks for platelet generation and cell-based therapies.
患有急性或持续性血小板减少症的患者需要进行血小板输注,而这些输注完全依赖供体,并且受到与储存和波动供应相关的挑战的限制。开发细胞培养技术将能够实现离体和供体独立的血小板生产。然而,需要取得重大进展来提高可扩展性并增加巨核细胞(Mk)培养的生产力。为了解决这些需求,我们评估了在商业上可获得的透气硅橡胶膜上培养的动员外周血 CD34 细胞的 Mk 生产,该膜可实现有效的气体交换,并研究了使用分批补料培养基稀释方案。从细胞表面密度为 40×10 CD34 细胞/cm(G40D)开始,在膜上培养细胞 5 天,然后进行培养基稀释,到第 11 天,每个输入 CD34 细胞可获得 39±19 CD41 CD42b Mk,与使用标准培养表面和完全培养基交换相比增加了 2.2 倍。到第 7 天,G40D 条件生成的 CD34 细胞增加了 1.5 倍,Mk 祖细胞的数量几乎增加了一倍。增加的 Mk 祖细胞数量加上培养基稀释,可能是由于白细胞介素(IL)-3 的保留,增加了 G40D 中的 Mk 生成。与对照相比,G40D 的活力更高,每毫升使用的培养基产生的 Mk 增加了三倍,并且平均倍性降低,但高倍性 Mk 的数量增加。最后,G40D-Mks 产生了原血小板和血小板样颗粒,这些颗粒在刺激下激活和聚集。这些结果突出了 Mk 细胞培养的明显改进,并展示了如何需要新技术和技术来实现临床上相关的 Mk 生产,以用于血小板生成和基于细胞的治疗。