Zea Miguel, Moya Ana, Fritsch Marco, Ramon Eloi, Villa Rosa, Gabriel Gemma
Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Barcelona , Spain.
Ph.D. in Electrical and Telecommunication Engineering , Universitat Autonoma de Barcelona (UAB) , Bellaterra , Barcelona , Spain.
ACS Appl Mater Interfaces. 2019 Apr 24;11(16):15160-15169. doi: 10.1021/acsami.9b03085. Epub 2019 Apr 10.
Today, electrochemical sensors are used for a broad range of applications. A fundamental challenge is still the achievement of long-term sensor stability by ensuring good adhesion between the deposited sensing layer and the substrate material, e.g., a metal electrode. Until now, the most applied strategy to overcome this problem is to increase the surface roughness of the metal layer by mechanical etching or by electroplating of additional material layers, which both imply an increase in manufacturing steps and thus the final cost of the overall device. Alternatively, to overcome these adhesion problems, we propose the direct printing of a novel platinum nanoparticle ink, which is compatible with low-cost additive digital inkjet and with flexible low-cost substrates. This water-based platinum ink has two unique features: it leads to highly rough surfaces, which promotes the adhesion of deposited sensing material, and it is a highly low-temperature curing ink, compatible with polymeric substrates that cannot withstand high temperatures. Based on this concept, we report about a long-term stable and highly sensitive solid-state pH sensor functionalized by anodic electrodeposited iridium oxide on a rough nanostructured platinum printed layer. The sensors showed an excellent reproducibility with a linear super-Nernstian response (71.3 ± 0.3 mV/pH unit) in a wide pH range (pH 2-11). Long-term stability tests for over 1 year of application demonstrate an excellent mechanical sensor layer stability, which is correlated to the distinct roughness of the printed platinum layer. This novel approach is useful to simplify the fabrication process and with that the sensor costs.
如今,电化学传感器被广泛应用于众多领域。一个基本的挑战仍然是通过确保沉积的传感层与基底材料(如金属电极)之间具有良好的附着力来实现传感器的长期稳定性。到目前为止,克服这个问题最常用的策略是通过机械蚀刻或电镀额外的材料层来增加金属层的表面粗糙度,这两者都意味着制造步骤的增加,从而增加了整个器件的最终成本。或者,为了克服这些附着力问题,我们提出直接印刷一种新型铂纳米颗粒墨水,它与低成本的添加剂数字喷墨技术以及柔性低成本基底兼容。这种水基铂墨水有两个独特的特点:它能产生高度粗糙的表面,促进沉积传感材料的附着力,并且它是一种低温固化墨水,与无法承受高温的聚合物基底兼容。基于这一概念,我们报道了一种长期稳定且高度灵敏的固态pH传感器,该传感器通过在粗糙的纳米结构铂印刷层上阳极电沉积氧化铱来实现功能化。这些传感器在宽pH范围(pH 2 - 11)内表现出出色的重现性,具有线性超能斯特响应(71.3 ± 0.3 mV/pH单位)。超过1年的长期稳定性测试表明传感器层具有出色的机械稳定性,这与印刷铂层明显的粗糙度相关。这种新方法有助于简化制造过程,从而降低传感器成本。