Division of Pulmonary and Critical Care Medicine and.
Harvard Medical School, Boston, Massachusetts.
Am J Respir Cell Mol Biol. 2019 Sep;61(3):322-331. doi: 10.1165/rcmb.2018-0326OC.
Mucin-secreting goblet cell metaplasia and hyperplasia (GCMH) is a common pathological phenotype in many human respiratory diseases, including asthma, chronic obstructive pulmonary disease, cystic fibrosis, primary ciliary dyskinesia, and infections. A better understanding of how goblet cell quantities or proportions in the airway epithelium are regulated may provide novel therapeutic targets to mitigate GCMH in these devastating diseases. We identify canonical SMAD signaling as the principal pathway restricting goblet cell differentiation in human airway epithelium. Differentiated goblet cells express low levels of phosphorylated SMAD. Accordingly, inhibition of SMAD signaling markedly amplifies GCMH induced by mucous mediators. In contrast, SMAD signaling activation impedes goblet cell generation and accelerates the resolution of preexisting GCMH. SMAD signaling inhibition can override the suppressive effects imposed by a GABAergic receptor inhibitor, suggesting the GABAergic pathway likely operates through inhibition of SMAD signaling in regulating mucous differentiation. Collectively, our data demonstrate that SMAD signaling plays a determining role in mucous cell differentiation, and thus raise the possibility that dysregulation of this pathway contributes to respiratory pathophysiology during airway inflammation and pulmonary diseases. In addition, our study also highlights the potential for SMAD modulation as a therapeutic target in mitigating GCMH.
黏蛋白分泌杯状细胞化生和增生(GCMH)是许多人类呼吸道疾病的常见病理表型,包括哮喘、慢性阻塞性肺疾病、囊性纤维化、原发性纤毛运动障碍和感染。更好地了解气道上皮中杯状细胞数量或比例是如何调节的,可能为减轻这些破坏性疾病中的 GCMH 提供新的治疗靶点。我们确定经典 SMAD 信号是限制人呼吸道上皮中杯状细胞分化的主要途径。分化的杯状细胞表达低水平的磷酸化 SMAD。因此,SMAD 信号抑制显著放大了黏液介质诱导的 GCMH。相反,SMAD 信号激活会阻碍杯状细胞的产生并加速已存在的 GCMH 的消退。SMAD 信号抑制可以克服 GABA 能受体抑制剂施加的抑制作用,表明 GABA 能途径可能通过抑制 SMAD 信号在调节黏液分化中起作用。总之,我们的数据表明 SMAD 信号在黏液细胞分化中起决定性作用,因此,该途径的失调可能导致气道炎症和肺部疾病期间的呼吸病理生理学。此外,我们的研究还强调了 SMAD 调节作为减轻 GCMH 的治疗靶点的潜力。