Suppr超能文献

原子精确的42碳石墨烯量子点在金属氧化物薄膜上的化学吸附极大地加速了界面电子转移。

Chemisorption of Atomically Precise 42-Carbon Graphene Quantum Dots on Metal Oxide Films Greatly Accelerates Interfacial Electron Transfer.

作者信息

Han Peng, Hou Ian Cheng-Yi, Lu Hao, Wang Xiao-Ye, Müllen Klaus, Bonn Mischa, Narita Akimitsu, Cánovas Enrique

机构信息

Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany.

Institute of Physical Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany.

出版信息

J Phys Chem Lett. 2019 Apr 4;10(7):1431-1436. doi: 10.1021/acs.jpclett.9b00399. Epub 2019 Mar 13.

Abstract

Graphene quantum dots (GQDs) are emerging as environmentally friendly, low-cost, and highly tunable building blocks in solar energy conversion architectures, such as solar (fuel) cells. Specifically, GQDs constitute a promising alternative for organometallic dyes in sensitized oxide systems. Current sensitized solar cells employing atomically precise GQDs are based on physisorbed sensitizers, with typically limited efficiencies. Chemisorption has been pointed out as a solution to boost photoconversion efficiencies, by allowing improved control over sensitizer surface coverage and sensitizer-oxide coupling strength. Here, employing time-resolved THz spectroscopy, we demonstrate that chemisorption of atomically precise C42-GQDs (hexa- peri-hexabenzocoronene derivatives consisting of 42 sp carbon atoms) onto mesoporous metal oxides, enabled by their functionalization with a carboxylate group, enhances electron transfer (ET) rates by almost 2 orders of magnitude when compared with physisorbed sensitizers. Density functional theory (DFT) calculations, absorption spectroscopy and valence band X-ray photoelectron spectroscopy reveal that the enhanced ET rates can be traced to stronger donor-acceptor coupling strength enabled by chemisorption.

摘要

石墨烯量子点(GQDs)正成为太阳能转换架构(如太阳能(燃料)电池)中环境友好、低成本且高度可调谐的构建模块。具体而言,GQDs是敏化氧化物系统中有机金属染料的一种有前景的替代物。目前采用原子精确GQDs的敏化太阳能电池基于物理吸附的敏化剂,效率通常有限。化学吸附已被指出是提高光转换效率的一种解决方案,因为它可以更好地控制敏化剂表面覆盖率和敏化剂 - 氧化物耦合强度。在此,我们利用时间分辨太赫兹光谱表明,通过用羧酸盐基团对其进行功能化,使原子精确的C42 - GQDs(由42个sp碳原子组成的六并六苯衍生物)化学吸附到介孔金属氧化物上,与物理吸附的敏化剂相比,电子转移(ET)速率提高了近2个数量级。密度泛函理论(DFT)计算、吸收光谱和价带X射线光电子能谱表明,增强的ET速率可归因于化学吸附实现的更强的供体 - 受体耦合强度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/156a/6727373/3ca7f9069ade/jz-2019-003997_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验