Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany.
Nano Lett. 2013 Nov 13;13(11):5311-5. doi: 10.1021/nl402820v. Epub 2013 Oct 10.
Photoinduced electron transfer processes from semiconductor quantum dots (QDs) molecularly bridged to a mesoporous oxide phase are quantitatively surveyed using optical pump-terahertz probe spectroscopy. We control electron transfer rates in donor-bridge-acceptor systems by tuning the electronic coupling strength through the use of n-methylene (SH-[CH2]n-COOH) and n-phenylene (SH-C6H4-COOH) molecular bridges. Our results show that electron transfer occurs as a nonresonant quantum tunneling process with characteristic decay rates of β(n) = 0.94 ± 0.08 and β(n) = 1.25 per methylene and phenylene group, respectively, in quantitative agreement with reported conductance measurements through single molecules and self-assembled monolayers. For a given QD donor-oxide acceptor separation distance, the aromatic n-phenylene based bridges allow faster electron transfer processes when compared with n-methylene based ones. Implications of these results for QD sensitized solar cell design are discussed.
用光泵太赫兹探针光谱法定量研究了半导体量子点(QD)与介孔氧化物相分子桥接的光诱导电子转移过程。我们通过使用 n-亚甲基(SH-[CH2]n-COOH)和 n-亚苯基(SH-C6H4-COOH)分子桥来调节电子耦合强度,从而控制供体-桥-受体系统中的电子转移速率。我们的结果表明,电子转移是通过非共振量子隧穿过程发生的,特征衰减率β(n)分别为 0.94 ± 0.08 和 1.25 每亚甲基和亚苯基基团,与通过单个分子和自组装单层报告的电导测量结果完全一致。对于给定的 QD 供体-氧化物受体分离距离,与基于 n-亚甲基的桥相比,基于芳香族 n-亚苯基的桥允许更快的电子转移过程。讨论了这些结果对 QD 敏化太阳能电池设计的影响。