†Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
‡Photovoltaic, Optoelectronic Devices Group, Department de Física, Universitat Jaume I, 12071 Castelló, Spain.
J Am Chem Soc. 2015 Apr 29;137(16):5602-9. doi: 10.1021/jacs.5b01946. Epub 2015 Apr 16.
At present, quantum-dot-sensitized solar cells (QDSCs) still exhibit moderate power conversion efficiency (with record efficiency of 6-7%), limited primarily by charge recombination. Therefore, suppressing recombination processes is a mandatory requirement to boost the performance of QDSCs. Herein, we demonstrate the ability of a novel sequential inorganic ZnS/SiO2 double layer treatment onto the QD-sensitized photoanode for strongly inhibiting interfacial recombination processes in QDSCs while providing improved cell stability. Theoretical modeling and impedance spectroscopy reveal that the combined ZnS/SiO2 treatment reduces interfacial recombination and increases charge collection efficiency when compared with conventional ZnS treatment alone. In line with those results, subpicosecond THz spectroscopy demonstrates that while QD to TiO2 electron-transfer rates and yields are insensitive to inorganic photoanode overcoating, back recombination at the oxide surface is strongly suppressed by subsequent inorganic treatments. By exploiting this approach, CdSe(x)Te(1-x) QDSCs exhibit a certified record efficiency of 8.21% (8.55% for a champion cell), an improvement of 20% over the previous record high efficiency of 6.8%, together with an additional beneficial effect of improved cell stability.
目前,量子点敏化太阳能电池(QDSCs)的功率转换效率仍然适中(记录效率为 6-7%),主要受到电荷复合的限制。因此,抑制复合过程是提高 QDSCs 性能的强制性要求。在此,我们展示了一种新型的顺序无机 ZnS/SiO2 双层处理方法,将其应用于 QD 敏化光阳极上,可强烈抑制 QDSCs 中的界面复合过程,同时提高电池稳定性。理论建模和阻抗谱表明,与单独使用传统的 ZnS 处理相比,ZnS/SiO2 复合处理可以降低界面复合并提高电荷收集效率。与这些结果一致,亚皮秒太赫兹光谱表明,尽管 QD 到 TiO2 的电子转移速率和产率对氧化物表面的无机覆盖层不敏感,但随后的无机处理强烈抑制了氧化物表面的反向复合。通过利用这种方法,CdSe(x)Te(1-x) QDSCs 表现出认证的 8.21%的记录效率(对于一个冠军电池为 8.55%),比之前的 6.8%的高效率提高了 20%,同时还提高了电池稳定性。