Suppr超能文献

淋病疫情的动态幂律性性传播网络模型。

A dynamic power-law sexual network model of gonorrhoea outbreaks.

机构信息

Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom.

Modelling and Economics Unit, National Infection Service, Public Health England, London, United Kingdom.

出版信息

PLoS Comput Biol. 2019 Mar 8;15(3):e1006748. doi: 10.1371/journal.pcbi.1006748. eCollection 2019 Mar.

Abstract

Human networks of sexual contacts are dynamic by nature, with partnerships forming and breaking continuously over time. Sexual behaviours are also highly heterogeneous, so that the number of partners reported by individuals over a given period of time is typically distributed as a power-law. Both the dynamism and heterogeneity of sexual partnerships are likely to have an effect in the patterns of spread of sexually transmitted diseases. To represent these two fundamental properties of sexual networks, we developed a stochastic process of dynamic partnership formation and dissolution, which results in power-law numbers of partners over time. Model parameters can be set to produce realistic conditions in terms of the exponent of the power-law distribution, of the number of individuals without relationships and of the average duration of relationships. Using an outbreak of antibiotic resistant gonorrhoea amongst men have sex with men as a case study, we show that our realistic dynamic network exhibits different properties compared to the frequently used static networks or homogeneous mixing models. We also consider an approximation to our dynamic network model in terms of a much simpler branching process. We estimate the parameters of the generation time distribution and offspring distribution which can be used for example in the context of outbreak reconstruction based on genomic data. Finally, we investigate the impact of a range of interventions against gonorrhoea, including increased condom use, more frequent screening and immunisation, concluding that the latter shows great promise to reduce the burden of gonorrhoea, even if the vaccine was only partially effective or applied to only a random subset of the population.

摘要

人类性接触网络本质上是动态的,伴侣关系随着时间的推移不断形成和破裂。性行为也具有高度的异质性,因此个体在给定时间段内报告的伴侣数量通常呈幂律分布。性伙伴关系的动态性和异质性都可能对性传播疾病的传播模式产生影响。为了表示性网络的这两个基本特性,我们开发了一种动态伙伴关系形成和破裂的随机过程,该过程导致随时间推移伴侣数量呈幂律分布。模型参数可以设置为产生现实条件,例如幂律分布的指数、没有关系的个体数量和关系的平均持续时间。我们使用男性与男性之间的耐抗生素淋病爆发作为案例研究,表明我们的现实动态网络与常用的静态网络或均匀混合模型相比具有不同的特性。我们还考虑了我们的动态网络模型的一个简化分支过程近似。我们估计了生成时间分布和后代分布的参数,这些参数可用于例如基于基因组数据的爆发重建。最后,我们研究了一系列针对淋病的干预措施的影响,包括增加使用避孕套、更频繁的筛查和免疫接种,结论是后者显示出减少淋病负担的巨大潜力,即使疫苗仅部分有效或仅应用于人群的随机子集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21eb/6426262/e0bbf04c8004/pcbi.1006748.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验