Suppr超能文献

利用病原体系统发育和发病时间序列量化传播异质性。

Quantifying Transmission Heterogeneity Using Both Pathogen Phylogenies and Incidence Time Series.

作者信息

Li Lucy M, Grassly Nicholas C, Fraser Christophe

机构信息

Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom.

Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, MA.

出版信息

Mol Biol Evol. 2017 Nov 1;34(11):2982-2995. doi: 10.1093/molbev/msx195.

Abstract

Heterogeneity in individual-level transmissibility can be quantified by the dispersion parameter k of the offspring distribution. Quantifying heterogeneity is important as it affects other parameter estimates, it modulates the degree of unpredictability of an epidemic, and it needs to be accounted for in models of infection control. Aggregated data such as incidence time series are often not sufficiently informative to estimate k. Incorporating phylogenetic analysis can help to estimate k concurrently with other epidemiological parameters. We have developed an inference framework that uses particle Markov Chain Monte Carlo to estimate k and other epidemiological parameters using both incidence time series and the pathogen phylogeny. Using the framework to fit a modified compartmental transmission model that includes the parameter k to simulated data, we found that more accurate and less biased estimates of the reproductive number were obtained by combining epidemiological and phylogenetic analyses. However, k was most accurately estimated using pathogen phylogeny alone. Accurately estimating k was necessary for unbiased estimates of the reproductive number, but it did not affect the accuracy of reporting probability and epidemic start date estimates. We further demonstrated that inference was possible in the presence of phylogenetic uncertainty by sampling from the posterior distribution of phylogenies. Finally, we used the inference framework to estimate transmission parameters from epidemiological and genetic data collected during a poliovirus outbreak. Despite the large degree of phylogenetic uncertainty, we demonstrated that incorporating phylogenetic data in parameter inference improved the accuracy and precision of estimates.

摘要

个体水平传播性的异质性可以通过子代分布的离散参数k来量化。量化异质性很重要,因为它会影响其他参数估计,调节流行病不可预测的程度,并且在感染控制模型中需要加以考虑。诸如发病时间序列等汇总数据往往没有足够的信息来估计k。纳入系统发育分析有助于在估计其他流行病学参数的同时估计k。我们开发了一种推理框架,该框架使用粒子马尔可夫链蒙特卡罗方法,利用发病时间序列和病原体系统发育来估计k和其他流行病学参数。使用该框架对包含参数k的修正分区传播模型进行拟合模拟数据,我们发现通过结合流行病学和系统发育分析,可以获得更准确且偏差更小的繁殖数估计值。然而,仅使用病原体系统发育能最准确地估计k。准确估计k对于无偏差估计繁殖数是必要的,但它不影响报告概率和疫情开始日期估计的准确性。我们进一步证明,通过从系统发育的后验分布中抽样,在存在系统发育不确定性的情况下进行推理是可行的。最后,我们使用该推理框架从脊髓灰质炎病毒爆发期间收集的流行病学和基因数据中估计传播参数。尽管存在很大程度的系统发育不确定性,但我们证明在参数推理中纳入系统发育数据提高了估计的准确性和精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0ea/5850343/9c0dfd6276ec/msx195f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验