Suppr超能文献

ConvSCCS:用于滞后不良事件检测的卷积自控制病例系列模型。

ConvSCCS: convolutional self-controlled case series model for lagged adverse event detection.

机构信息

CMAP Ecole Polytechnique, 91128 Palaiseau Cedex, France.

CMAP Ecole Polytechnique, 91128 Palaiseau Cedex, France and CEREMADE Université Paris-Dauphine, PSL, 75765 Paris Cedex 16, France.

出版信息

Biostatistics. 2020 Oct 1;21(4):758-774. doi: 10.1093/biostatistics/kxz003.

Abstract

With the increased availability of large electronic health records databases comes the chance of enhancing health risks screening. Most post-marketing detection of adverse drug reaction (ADR) relies on physicians' spontaneous reports, leading to under-reporting. To take up this challenge, we develop a scalable model to estimate the effect of multiple longitudinal features (drug exposures) on a rare longitudinal outcome. Our procedure is based on a conditional Poisson regression model also known as self-controlled case series (SCCS). To overcome the need of precise risk periods specification, we model the intensity of outcomes using a convolution between exposures and step functions, which are penalized using a combination of group-Lasso and total-variation. Up to our knowledge, this is the first SCCS model with flexible intensity able to handle multiple longitudinal features in a single model. We show that this approach improves the state-of-the-art in terms of mean absolute error and computation time for the estimation of relative risks on simulated data. We apply this method on an ADR detection problem, using a cohort of diabetic patients extracted from the large French national health insurance database (SNIIRAM), a claims database containing medical reimbursements of more than 53 million people. This work has been done in the context of a research partnership between Ecole Polytechnique and CNAMTS (in charge of SNIIRAM).

摘要

随着大型电子健康记录数据库的可用性增加,增强健康风险筛查的机会也随之增加。大多数药物不良反应(ADR)的上市后检测依赖于医生的自发报告,导致报告不足。为了应对这一挑战,我们开发了一个可扩展的模型,以估计多个纵向特征(药物暴露)对罕见纵向结果的影响。我们的程序基于条件泊松回归模型,也称为自我对照病例系列(SCCS)。为了克服对精确风险期指定的需求,我们使用暴露和阶跃函数之间的卷积来对结果的强度进行建模,使用组 Lasso 和全变差的组合对其进行惩罚。据我们所知,这是第一个具有灵活强度的 SCCS 模型,能够在单个模型中处理多个纵向特征。我们表明,这种方法在模拟数据的相对风险估计方面,在平均绝对误差和计算时间方面都优于最新技术。我们在一个 ADR 检测问题上应用了这种方法,该问题使用了从法国国家健康保险数据库(SNIIRAM)中提取的糖尿病患者队列,该数据库包含超过 5300 万人的医疗报销信息。这项工作是在 Ecole Polytechnique 和 CNAMTS(负责 SNIIRAM)之间的研究合作的背景下完成的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验