Suppr超能文献

在欧洲复制 OMOP 实验:评估电子健康记录数据库中风险识别方法。

Replication of the OMOP experiment in Europe: evaluating methods for risk identification in electronic health record databases.

机构信息

Department of Medical Informatics, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands,

出版信息

Drug Saf. 2013 Oct;36 Suppl 1:S159-69. doi: 10.1007/s40264-013-0109-8.

Abstract

BACKGROUND

The Observational Medical Outcomes Partnership (OMOP) has just completed a large scale empirical evaluation of statistical methods and analysis choices for risks identification in longitudinal observational healthcare data. This experiment drew data from four large US health insurance claims databases and one US electronic health record (EHR) database, but it is unclear to what extend the findings of this study apply to other data sources.

OBJECTIVE

To replicate the OMOP experiment in six European EHR databases.

RESEARCH DESIGN

Six databases of the EU-ADR (Exploring and Understanding Adverse Drug Reactions) database network participated in this study: Aarhus (Denmark), ARS (Italy), HealthSearch (Italy), IPCI (the Netherlands), Pedianet (Italy), and Pharmo (the Netherlands). All methods in the OMOP experiment were applied to a collection of 165 positive and 234 negative control drug-outcome pairs across four outcomes: acute liver injury, acute myocardial infarction, acute kidney injury, and upper gastrointestinal bleeding. Area under the receiver operator characteristics curve (AUC) was computed per database and for a combination of all six databases using meta-analysis for random effects. We provide expected values of estimation error as well, based on negative controls.

RESULTS

Similarly to the US experiment, high predictive accuracy was found (AUC >0.8) for some analyses. Self-controlled designs, such as self-controlled case series, IC temporal pattern discovery and self-controlled cohort achieved higher performance than other methods, both in terms of predictive accuracy and observed bias.

CONCLUSIONS

The major findings of the recent OMOP experiment were also observed in the European databases.

摘要

背景

观察性医学结局伙伴关系(OMOP)刚刚完成了一项大规模的实证评估,以确定在纵向观察性医疗保健数据中识别风险的统计方法和分析选择。该实验从四个美国大型医疗保险索赔数据库和一个美国电子健康记录(EHR)数据库中提取数据,但尚不清楚该研究的发现在多大程度上适用于其他数据源。

目的

在六个欧洲 EHR 数据库中复制 OMOP 实验。

研究设计

EU-ADR(探索和了解药物不良反应)数据库网络的六个数据库参与了这项研究:奥胡斯(丹麦)、ARS(意大利)、HealthSearch(意大利)、IPCI(荷兰)、Pedianet(意大利)和 Pharmo(荷兰)。OMOP 实验中的所有方法均应用于来自四个结局的 165 个阳性和 234 个阴性对照药物-结局对的集合:急性肝损伤、急性心肌梗死、急性肾损伤和上消化道出血。每个数据库的接收者操作特征曲线(ROC)下面积(AUC)和六个数据库的组合使用随机效应元分析进行计算。我们还根据阴性对照提供了估计误差的预期值。

结果

与美国实验类似,某些分析的预测准确性很高(AUC>0.8)。自对照设计,如自对照病例系列、IC 时间模式发现和自对照队列,在预测准确性和观察到的偏差方面都优于其他方法。

结论

最近 OMOP 实验的主要发现也在欧洲数据库中得到了观察。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验