Suppr超能文献

校准的自我对照队列分析在时间模式发现中的经验性能:为开发风险识别和分析系统提供的经验。

Empirical performance of the calibrated self-controlled cohort analysis within temporal pattern discovery: lessons for developing a risk identification and analysis system.

机构信息

Uppsala Monitoring Centre, WHO Collaborating Centre for International Drug Monitoring, Uppsala, Sweden,

出版信息

Drug Saf. 2013 Oct;36 Suppl 1:S107-21. doi: 10.1007/s40264-013-0095-x.

Abstract

BACKGROUND

Observational healthcare data offer the potential to identify adverse drug reactions that may be missed by spontaneous reporting. The self-controlled cohort analysis within the Temporal Pattern Discovery framework compares the observed-to-expected ratio of medical outcomes during post-exposure surveillance periods with those during a set of distinct pre-exposure control periods in the same patients. It utilizes an external control group to account for systematic differences between the different time periods, thus combining within- and between-patient confounder adjustment in a single measure.

OBJECTIVES

To evaluate the performance of the calibrated self-controlled cohort analysis within Temporal Pattern Discovery as a tool for risk identification in observational healthcare data.

RESEARCH DESIGN

Different implementations of the calibrated self-controlled cohort analysis were applied to 399 drug-outcome pairs (165 positive and 234 negative test cases across 4 health outcomes of interest) in 5 real observational databases (four with administrative claims and one with electronic health records).

MEASURES

Performance was evaluated on real data through sensitivity/specificity, the area under receiver operator characteristics curve (AUC), and bias.

RESULTS

The calibrated self-controlled cohort analysis achieved good predictive accuracy across the outcomes and databases under study. The optimal design based on this reference set uses a 360 days surveillance period and a single control period 180 days prior to new prescriptions. It achieved an average AUC of 0.75 and AUC >0.70 in all but one scenario. A design with three separate control periods performed better for the electronic health records database and for acute renal failure across all data sets. The estimates for negative test cases were generally unbiased, but a minor negative bias of up to 0.2 on the RR-scale was observed with the configurations using multiple control periods, for acute liver injury and upper gastrointestinal bleeding.

CONCLUSIONS

The calibrated self-controlled cohort analysis within Temporal Pattern Discovery shows promise as a tool for risk identification; it performs well at discriminating positive from negative test cases. The optimal parameter configuration may vary with the data set and medical outcome of interest.

摘要

背景

观察性医疗保健数据提供了识别可能被自发报告遗漏的药物不良反应的潜力。在 Temporal Pattern Discovery 框架内的自我对照队列分析中,将暴露后监测期内观察到的与预期的医疗结果比值与同一患者的一组独特的暴露前对照期内的比值进行比较。它利用外部对照组来解释不同时间段之间的系统差异,从而将患者内和患者间的混杂因素调整合并在单一指标中。

目的

评估 Temporal Pattern Discovery 中校准的自我对照队列分析作为一种在观察性医疗保健数据中进行风险识别的工具的性能。

研究设计

将不同实现的校准自我对照队列分析应用于 399 个药物-结果对(4 个感兴趣的医疗结果中有 165 个阳性和 234 个阴性测试案例)在 5 个真实观察性数据库中(4 个使用行政索赔,1 个使用电子健康记录)。

测量

通过敏感性/特异性、接收者操作特征曲线下面积(AUC)和偏差,在真实数据上评估性能。

结果

校准的自我对照队列分析在研究的结果和数据库中实现了良好的预测准确性。基于参考集的最佳设计使用 360 天的监测期和新处方前 180 天的单个对照期。它在所有场景中平均 AUC 达到 0.75,在除一个场景外均大于 0.70。对于电子健康记录数据库和所有数据集的急性肾衰竭,使用三个单独对照期的设计表现更好。对于阴性测试案例,估计值通常没有偏差,但在使用多个对照期的配置中,对于急性肝损伤和上消化道出血,RR 尺度上观察到了 0.2 的轻微负偏差。

结论

Temporal Pattern Discovery 中的校准自我对照队列分析作为一种风险识别工具具有很大的潜力;它在区分阳性和阴性测试案例方面表现良好。最佳参数配置可能因数据集和感兴趣的医疗结果而异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验