Suppr超能文献

使用CombiROC通过综合ROC分析进行最佳生物标志物组合的计算与选择

Computation and Selection of Optimal Biomarker Combinations by Integrative ROC Analysis Using CombiROC.

作者信息

Bombaci Mauro, Rossi Riccardo L

机构信息

Translational Research Unit, Protein Arrays Lab, Istituto Nazionale Genetica Molecolare, Milan, Italy.

Bioinformatics, Istituto Nazionale Genetica Molecolare, Milan, Italy.

出版信息

Methods Mol Biol. 2019;1959:247-259. doi: 10.1007/978-1-4939-9164-8_16.

Abstract

The diagnostic accuracy of biomarker-based approaches can be considerably improved by combining multiple markers. A biomarker's capacity to identify specific subjects is usually assessed using receiver operating characteristic (ROC) curves. Multimarker signatures are complicated to select as data signatures must be integrated using sophisticated statistical methods. CombiROC, developed as a user-friendly web tool, helps researchers to accurately determine optimal combinations of markers identified by a range of omics methods. With CombiROC, data of different types, such as proteomics and transcriptomics, can be analyzed using Sensitivity/Specificity filters: the number of candidate marker panels arising from combinatorial analysis is easily optimized bypassing limitations imposed by the nature of different experimental approaches. Users have full control over initial selection stringency, then CombiROC computes sensitivity and specificity for all marker combinations, determines performance for the best combinations, and produces ROC curves for automatic comparisons. All steps can be visualized in a graphic interface. CombiROC is designed without hard-coded thresholds, to allow customized fitting of each specific dataset: this approach dramatically reduces computational burden and false-negative rates compared to fixed thresholds. CombiROC can be accessed at www.combiroc.eu .

摘要

通过组合多个生物标志物,基于生物标志物的诊断方法的准确性可得到显著提高。生物标志物识别特定受试者的能力通常使用受试者工作特征(ROC)曲线来评估。由于必须使用复杂的统计方法来整合数据特征,因此多标志物特征的选择很复杂。CombiROC作为一种用户友好的网络工具而开发,可帮助研究人员准确确定通过一系列组学方法识别出的标志物的最佳组合。使用CombiROC,可以通过灵敏度/特异性过滤器分析不同类型的数据,如蛋白质组学和转录组学数据:通过绕过不同实验方法性质所带来的限制,可轻松优化组合分析产生的候选标志物组的数量。用户可完全控制初始选择的严格程度,然后CombiROC会计算所有标志物组合的灵敏度和特异性,确定最佳组合的性能,并生成ROC曲线以进行自动比较。所有步骤都可在图形界面中可视化。CombiROC的设计没有硬编码阈值,以便对每个特定数据集进行定制拟合:与固定阈值相比,这种方法可显著降低计算负担和假阴性率。可通过www.combiroc.eu访问CombiROC。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验