1 Department of Computer Science and Sheffield Robotics, University of Sheffield , Sheffield , UK.
2 Department of Electronic and Electrical Engineering, University of Bath , Bath, BA2 7AY , UK.
Philos Trans R Soc Lond B Biol Sci. 2019 Apr 29;374(1771):20180025. doi: 10.1098/rstb.2018.0025.
From neuroscience, brain imaging and the psychology of memory, we are beginning to assemble an integrated theory of the brain subsystems and pathways that allow the compression, storage and reconstruction of memories for past events and their use in contextualizing the present and reasoning about the future-mental time travel (MTT). Using computational models, embedded in humanoid robots, we are seeking to test the sufficiency of this theoretical account and to evaluate the usefulness of brain-inspired memory systems for social robots. In this contribution, we describe the use of machine learning techniques-Gaussian process latent variable models-to build a multimodal memory system for the iCub humanoid robot and summarize results of the deployment of this system for human-robot interaction. We also outline the further steps required to create a more complete robotic implementation of human-like autobiographical memory and MTT. We propose that generative memory models, such as those that form the core of our robot memory system, can provide a solution to the symbol grounding problem in embodied artificial intelligence. This article is part of the theme issue 'From social brains to social robots: applying neurocognitive insights to human-robot interaction'.
从神经科学、大脑成像和记忆心理学的角度来看,我们开始整合一个允许压缩、存储和重建过去事件记忆的大脑子系统和路径的综合理论,并将其用于情境化现在和推理未来——心理时间旅行 (MTT)。我们使用计算模型,嵌入人形机器人中,试图检验这一理论解释的充分性,并评估脑启发记忆系统对社交机器人的有用性。在这篇文章中,我们描述了使用机器学习技术——高斯过程潜在变量模型——为 iCub 人形机器人构建一个多模态记忆系统,并总结了该系统在人机交互中的部署结果。我们还概述了创建更完整的类人自传体记忆和 MTT 机器人实现所需的进一步步骤。我们提出,生成式记忆模型,如构成我们机器人记忆系统核心的模型,可以为具身人工智能中的符号基础问题提供解决方案。本文是主题为“从社会大脑到社交机器人:将神经认知见解应用于人机交互”的一部分。