Roncone Alessandro, Hoffmann Matej, Pattacini Ugo, Fadiga Luciano, Metta Giorgio
iCub Facility, Istituto Italiano di Tecnologia, Genova, Italy.
Social Robotics Lab, Computer Science Department, Yale University, New Haven, CT, United States of America.
PLoS One. 2016 Oct 6;11(10):e0163713. doi: 10.1371/journal.pone.0163713. eCollection 2016.
This paper investigates a biologically motivated model of peripersonal space through its implementation on a humanoid robot. Guided by the present understanding of the neurophysiology of the fronto-parietal system, we developed a computational model inspired by the receptive fields of polymodal neurons identified, for example, in brain areas F4 and VIP. The experiments on the iCub humanoid robot show that the peripersonal space representation i) can be learned efficiently and in real-time via a simple interaction with the robot, ii) can lead to the generation of behaviors like avoidance and reaching, and iii) can contribute to the understanding the biological principle of motor equivalence. More specifically, with respect to i) the present model contributes to hypothesizing a learning mechanisms for peripersonal space. In relation to point ii) we show how a relatively simple controller can exploit the learned receptive fields to generate either avoidance or reaching of an incoming stimulus and for iii) we show how the robot can select arbitrary body parts as the controlled end-point of an avoidance or reaching movement.
本文通过在人形机器人上的实现,研究了一种基于生物学动机的个人空间模型。在目前对额顶叶系统神经生理学理解的指导下,我们开发了一种计算模型,该模型受例如在脑区F4和VIP中识别出的多模态神经元感受野的启发。在iCub人形机器人上进行的实验表明,个人空间表征:i)可以通过与机器人的简单交互高效且实时地学习;ii)能够导致诸如回避和伸手等行为的产生;iii)有助于理解运动等效性的生物学原理。更具体地说,关于i),当前模型有助于推测个人空间的学习机制。关于ii),我们展示了一个相对简单的控制器如何利用学习到的感受野来产生对传入刺激的回避或伸手动作;对于iii),我们展示了机器人如何选择任意身体部位作为回避或伸手动作的受控端点。