Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA; Karagozian and Case, Inc., 700 N Brand Blvd., Suite 700, Glendale, CA, 91203, USA.
Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA.
Hear Res. 2019 Jul;378:75-91. doi: 10.1016/j.heares.2019.02.009. Epub 2019 Feb 23.
The human tympanic membrane (TM, or eardrum) is composed primarily of layers of collagen fibers oriented in the radial and circumferential directions, as well as epidermal and mucosal layers at the lateral and medial surfaces. The mechanical properties of the TM depend on the microstructures of the collagen fibers, which vary with location, resulting in a spatial variation of Young's modulus. In this study, the Young's modulus of the human TM is measured using microindentation. A 10 μm diameter spherical nanoindenter tip is used to indent the TM at different locations in the lateral and medial surfaces. Through a viscoelastic contact analysis, the steady state out-of-plane (through thickness) Young's modulus at a constant strain rate for the TM is determined from the uniaxial relaxation modulus. The measured spatial distribution of Young's modulus is reported for the entire TM pars tensa on both lateral and medial surfaces. The Young's modulus, for the four TM quadrants, is analyzed statistically using a normal quantile-quantile (Q-Q) plot. The obtained S-shaped curve indicates a bi-modal Gaussian distribution in the Q-Q plot. The spatial distribution of the Young's modulus is modeled by a bivariate Gaussian function in the polar coordinates over the entire TM on both the lateral and medial surfaces. It is shown that the anterior-superior quadrant has the smallest value of Young's modulus. Differences are observed in the spatial distribution of the Young's modulus for both the lateral and medial surfaces. For the medial surface, Young's modulus varies mainly along the radial direction following a small-large-small trend, emanating from the umbo. For the lateral surface, the modulus at the anterior-superior quadrant shows the smallest modulus; the modulus decreases gradually along the radial directions. The quantitative results presented in this paper will help improve future simulation models of the middle ear by using spatial dependence of Young's modulus over the entire TM.
人鼓膜(TM,或耳膜)主要由沿径向和周向排列的胶原纤维层以及外侧和内侧表面的表皮和黏膜层组成。TM 的力学性能取决于胶原纤维的微观结构,胶原纤维的位置不同,其结构也不同,导致杨氏模量具有空间变异性。在这项研究中,使用微压痕法测量人 TM 的杨氏模量。使用 10 μm 直径的球形纳米压痕针尖在外侧和内侧表面的不同位置压入 TM。通过粘弹性接触分析,从单轴松弛模量确定 TM 在恒定应变速率下的稳态平面外(贯穿厚度)杨氏模量。报告了整个 TM 紧张部在外侧和内侧表面的杨氏模量的空间分布。使用正态分位数-分位数(Q-Q)图对 TM 的四个象限的杨氏模量进行统计学分析。得到的 S 形曲线表明 Q-Q 图中存在双峰高斯分布。在整个 TM 上,使用极坐标中的双变量高斯函数对杨氏模量的空间分布进行建模,在外侧和内侧表面上。结果表明,前上象限的杨氏模量最小。观察到外侧和内侧表面上杨氏模量的空间分布存在差异。对于内侧表面,杨氏模量主要沿径向方向变化,呈现从小变大再变小的趋势,从鼓脐开始。对于外侧表面,前上象限的模量具有最小的模量;模量沿径向方向逐渐减小。本文提出的定量结果将有助于通过使用整个 TM 上杨氏模量的空间相关性来改进中耳的未来仿真模型。