Suppr超能文献

由带相反电荷的聚电解质形成的液体凝聚层的结构。

Structure of Liquid Coacervates formed by Oppositely Charged Polyelectrolytes.

作者信息

Rubinstein Michael, Liao Qi, Panyukov Sergey

机构信息

Departments of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, NC 27708, United States (

Institute of Chemistry of the Chinese Academy of Sciences, Beijing, 100080, P. R., China.

出版信息

Macromolecules. 2018 Dec 11;51(23):9572-9588. doi: 10.1021/acs.macromol.8b02059. Epub 2018 Nov 20.

Abstract

We develop a scaling theory and perform molecular dynamic simulations of weakly interacting coacervates with electrostatic interaction energy per charge less than thermal energy . Such liquid coacervates formed by oppositely charged polyelectrolytes can be asymmetric in charge density and number of charges per chain. We predict that these coacervates form interpenetrating solutions with two correlation lengths and two qualitatively different types of conformations of polyelectrolytes with lower and higher charge densities, which are analogous to chain conformations in quasi-neutral and in polyelectrolyte solutions, respectively. Weaker charged chains are attracted to and adsorbed on stronger charged chains forming a screening "coat" around the stronger charged polyelectrolytes. Salt added at lower concentrations screens the repulsion between stronger charged chains, thereby reducing the thickness of the screening coat and resulting in the non-zero net polymer charge in the coacervate. At higher salt concentrations salt screens the attraction between oppositely charged chains, decreasing the coacervate concentration and its polymeric charge density. Thus, we predict a non-monotonic salt concentration dependence of polymeric charge density for asymmetric coacervates. Phase diagram for a mixture of oppositely charged polyelectrolytes at various compositions is proposed for different salt concentrations.

摘要

我们发展了一种标度理论,并对电荷静电相互作用能小于热能的弱相互作用凝聚层进行了分子动力学模拟。由带相反电荷的聚电解质形成的这种液体凝聚层在电荷密度和每条链的电荷数上可能是不对称的。我们预测这些凝聚层形成具有两个关联长度以及两种定性不同构象的互穿溶液,这两种构象分别对应电荷密度较低和较高的聚电解质,它们分别类似于准中性溶液和聚电解质溶液中的链构象。电荷较弱的链被吸引并吸附在电荷较强的链上,在电荷较强的聚电解质周围形成一个屏蔽“层”。较低浓度添加的盐屏蔽了电荷较强的链之间的排斥力,从而减小了屏蔽层的厚度,并导致凝聚层中聚合物净电荷不为零。在较高盐浓度下,盐屏蔽了带相反电荷链之间的吸引力,降低了凝聚层浓度及其聚合物电荷密度。因此,我们预测不对称凝聚层的聚合物电荷密度对盐浓度具有非单调依赖性。针对不同盐浓度,提出了不同组成的带相反电荷聚电解质混合物的相图。

相似文献

1
Structure of Liquid Coacervates formed by Oppositely Charged Polyelectrolytes.由带相反电荷的聚电解质形成的液体凝聚层的结构。
Macromolecules. 2018 Dec 11;51(23):9572-9588. doi: 10.1021/acs.macromol.8b02059. Epub 2018 Nov 20.
3
Ion Pairing and the Structure of Gel Coacervates.离子配对与凝胶凝聚层的结构
Macromolecules. 2020 Nov 10;53(21):9420-9442. doi: 10.1021/acs.macromol.0c01360. Epub 2020 Oct 30.
5
Coacervation between Two Positively Charged Poly(ionic liquid)s.两种带正电荷的聚离子液体的凝聚作用。
Macromol Rapid Commun. 2022 Sep;43(18):e2200191. doi: 10.1002/marc.202200191. Epub 2022 Jun 8.
6
Structure and Dynamics of Hybrid Colloid-Polyelectrolyte Coacervates.混合胶体-聚电解质凝聚层的结构与动力学
Macromolecules. 2023 Feb 14;56(4):1713-1730. doi: 10.1021/acs.macromol.2c02464. eCollection 2023 Feb 28.
7
9
Complexation and coacervation of like-charged polyelectrolytes inspired by mussels.受贻贝启发的同电荷聚电解质的络合与凝聚
Proc Natl Acad Sci U S A. 2016 Feb 16;113(7):E847-53. doi: 10.1073/pnas.1521521113. Epub 2016 Feb 1.
10
Fluctuations, structure, and size inside coacervates.凝聚层内部的波动、结构和大小。
Eur Phys J E Soft Matter. 2023 Sep 8;46(9):79. doi: 10.1140/epje/s10189-023-00335-1.

引用本文的文献

2
Design Rules for the Sequestration of Viruses into Polypeptide Complex Coacervates.将病毒隔离到多肽复合凝聚层中的设计规则
Biomacromolecules. 2024 Feb 12;25(2):741-753. doi: 10.1021/acs.biomac.3c00938. Epub 2023 Dec 16.
4
Polyelectrolyte Cylindrical Brushes in Hairy Gels.毛发状凝胶中的聚电解质圆柱形刷
Polymers (Basel). 2023 Jul 31;15(15):3261. doi: 10.3390/polym15153261.
5
Scattering evidence of positional charge correlations in polyelectrolyte complexes.聚电解质复合物中位置电荷相关性的零散证据。
Proc Natl Acad Sci U S A. 2023 Aug 8;120(32):e2302151120. doi: 10.1073/pnas.2302151120. Epub 2023 Jul 31.
6
Structure and Dynamics of Hybrid Colloid-Polyelectrolyte Coacervates.混合胶体-聚电解质凝聚层的结构与动力学
Macromolecules. 2023 Feb 14;56(4):1713-1730. doi: 10.1021/acs.macromol.2c02464. eCollection 2023 Feb 28.
7
Driving force and pathway in polyelectrolyte complex coacervation.聚电解质复合凝聚的驱动力和途径。
Proc Natl Acad Sci U S A. 2022 Sep 6;119(36):e2209975119. doi: 10.1073/pnas.2209975119. Epub 2022 Aug 29.
8
Sequence Blockiness Controls the Structure of Polyampholyte Necklaces.序列块状度控制聚两性电解质项链的结构。
ACS Macro Lett. 2021 Aug 17;10(8):1048-1054. doi: 10.1021/acsmacrolett.1c00318. Epub 2021 Jul 28.
9
Ion Pairing and the Structure of Gel Coacervates.离子配对与凝胶凝聚层的结构
Macromolecules. 2020 Nov 10;53(21):9420-9442. doi: 10.1021/acs.macromol.0c01360. Epub 2020 Oct 30.
10
Polyelectrolyte Complex Coacervation across a Broad Range of Charge Densities.宽电荷密度范围内的聚电解质复合凝聚
Macromolecules. 2021 Jul 27;54(14):6878-6890. doi: 10.1021/acs.macromol.1c00703. Epub 2021 Jul 6.

本文引用的文献

2
Development of the modern theory of polymeric complex coacervation.高分子复合凝聚理论的发展。
Adv Colloid Interface Sci. 2017 Jan;239:2-16. doi: 10.1016/j.cis.2016.04.004. Epub 2016 Apr 29.
5
A mussel-derived one component adhesive coacervate.一种源自贻贝的单组分粘性凝聚层。
Acta Biomater. 2014 Apr;10(4):1663-70. doi: 10.1016/j.actbio.2013.09.007. Epub 2013 Sep 21.
6
Polyelectrolyte complexes: bulk phases and colloidal systems.聚电解质复合物:体相和胶体体系。
J Colloid Interface Sci. 2011 Sep 15;361(2):407-22. doi: 10.1016/j.jcis.2011.05.080. Epub 2011 Jun 7.
7
Stimuli-responsive LbL capsules and nanoshells for drug delivery.刺激响应型 LbL 胶囊和纳米壳用于药物递送。
Adv Drug Deliv Rev. 2011 Aug 14;63(9):730-47. doi: 10.1016/j.addr.2011.03.010. Epub 2011 Apr 2.
10
Cement proteins of the tube-building polychaete Phragmatopoma californica.管栖多毛类动物加州盘管虫的水泥蛋白。
J Biol Chem. 2005 Dec 30;280(52):42938-44. doi: 10.1074/jbc.M508457200. Epub 2005 Oct 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验