Suppr超能文献

基于拓扑模式的本体富集的扩展分析

Extended Analysis of Topological-Pattern-Based Ontology Enrichment.

作者信息

He Zhe, Keloth Vipina Kuttichi, Chen Yan, Geller James

机构信息

School of Information, Florida State University Tallahassee, Florida USA

Department of Computer Science, New Jersey Institute of Technology, Newark, NJ USA,

出版信息

Proceedings (IEEE Int Conf Bioinformatics Biomed). 2018 Dec;2018:1641-1648. doi: 10.1109/BIBM.2018.8621564. Epub 2019 Jan 24.

Abstract

Maintenance of biomedical ontologies is difficult. We have previously developed a topological-pattern-based method to deal with the problem of identifying concepts in a reference ontology that could be of interest for insertion into a target ontology. Assuming that both ontologies are parts of the Unified Medical Language System (UMLS), the method suggests approximate locations where the target ontology could be extended with new concepts from the reference ontology. However, the final decision about each concept has to be made by a human expert. In this paper, we describe the universe of cross-ontology topological patterns in quantitative terms. We then present a theoretical analysis of the number of potential placements of reference concepts in a path in a target ontology, allowing for new cross-ontology synonyms. This provides a rough estimate of what expert resources need to be allocated for the task. One insight in previous work on this topic was the large percentage of cases where importing concepts was impossible, due to a configuration called "alternative classification." In this paper, we confirm this observation. Our target ontology is the National Cancer Institute thesaurus (NCIt). However, the methods can be applied to other pairs of ontologies with hierarchical relationships from the UMLS.

摘要

生物医学本体的维护颇具难度。我们之前开发了一种基于拓扑模式的方法,用于处理在参考本体中识别可能有兴趣插入到目标本体中的概念这一问题。假设两个本体都是统一医学语言系统(UMLS)的一部分,该方法会指出目标本体可以从参考本体中引入新概念进行扩展的大致位置。然而,关于每个概念的最终决策必须由人类专家做出。在本文中,我们从定量角度描述了跨本体拓扑模式的全域。然后,我们对参考概念在目标本体路径中的潜在放置数量进行了理论分析,同时考虑了新的跨本体同义词。这为该任务所需分配的专家资源提供了一个粗略估计。此前关于该主题的一项研究发现,由于一种名为“替代分类”的配置,在很大比例的情况下无法导入概念。在本文中,我们证实了这一观察结果。我们的目标本体是美国国立癌症研究所叙词表(NCIt)。不过,这些方法可应用于来自UMLS且具有层次关系的其他本体对。

相似文献

1
Extended Analysis of Topological-Pattern-Based Ontology Enrichment.基于拓扑模式的本体富集的扩展分析
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2018 Dec;2018:1641-1648. doi: 10.1109/BIBM.2018.8621564. Epub 2019 Jan 24.

本文引用的文献

4
Towards an Obesity-Cancer Knowledge Base: Biomedical Entity Identification and Relation Detection.迈向肥胖-癌症知识库:生物医学实体识别与关系检测
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2016 Dec;2016:1081-1088. doi: 10.1109/BIBM.2016.7822672. Epub 2017 Jan 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验