Suppr超能文献

通过机器学习对癌症患者进行风险分层的活细胞表型生物标志物微流控检测

Live-cell phenotypic-biomarker microfluidic assay for the risk stratification of cancer patients via machine learning.

作者信息

Manak Michael S, Varsanik Jonathan S, Hogan Brad J, Whitfield Matt J, Su Wendell R, Joshi Nikhil, Steinke Nicolai, Min Andrew, Berger Delaney, Saphirstein Robert J, Dixit Gauri, Meyyappan Thiagarajan, Chu Hui-May, Knopf Kevin B, Albala David M, Sant Grannum R, Chander Ashok C

机构信息

Cellanyx Diagnostics, Beverly, MA, USA.

Anoixis Corporation , Natick, MA, USA.

出版信息

Nat Biomed Eng. 2018 Oct;2(10):761-772. doi: 10.1038/s41551-018-0285-z. Epub 2018 Sep 17.

Abstract

The risk stratification of prostate cancer and breast cancer tumours from patients relies on histopathology, selective genomic testing, or on other methods employing fixed formalin tissue samples. However, static biomarker measurements from bulk fixed-tissue samples provide limited accuracy and actionability. Here, we report the development of a live-primary-cell phenotypic-biomarker assay with single-cell resolution, and its validation with prostate cancer and breast cancer tissue samples for the prediction of post-surgical adverse pathology. The assay includes a collagen-I/fibronectin extracellular-matrix formulation, dynamic live-cell biomarkers, a microfluidic device, machine-vision analysis and machine-learning algorithms, and generates predictive scores of adverse pathology at the time of surgery. Predictive scores for the risk stratification of 59 prostate cancer patients and 47 breast cancer patients, with values for area under the curve in receiver-operating-characteristic curves surpassing 80%, support the validation of the assay and its potential clinical applicability for the risk stratification of cancer patients.

摘要

对患者前列腺癌和乳腺癌肿瘤的风险分层依赖于组织病理学、选择性基因组检测或其他采用固定福尔马林组织样本的方法。然而,来自大量固定组织样本的静态生物标志物测量提供的准确性和可操作性有限。在此,我们报告了一种具有单细胞分辨率的活原代表型生物标志物检测方法的开发,并使用前列腺癌和乳腺癌组织样本对其进行验证,以预测术后不良病理情况。该检测方法包括I型胶原蛋白/纤连蛋白细胞外基质配方、动态活细胞生物标志物、微流控装置、机器视觉分析和机器学习算法,并在手术时生成不良病理情况的预测分数。对59例前列腺癌患者和47例乳腺癌患者进行风险分层的预测分数,其受试者操作特征曲线下面积值超过80%,支持了该检测方法的验证及其在癌症患者风险分层中的潜在临床适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e76/6407716/38a0ae4bb8fe/nihms-1006348-f0001.jpg

相似文献

引用本文的文献

3
Artificial Intelligence-Powered Materials Science.人工智能驱动的材料科学
Nanomicro Lett. 2025 Feb 6;17(1):135. doi: 10.1007/s40820-024-01634-8.
4
Machine Learning-Driven Innovations in Microfluidics.机器学习驱动的微流控创新
Biosensors (Basel). 2024 Dec 13;14(12):613. doi: 10.3390/bios14120613.
10
Multifunctional nanostructures: Intelligent design to overcome biological barriers.多功能纳米结构:克服生物屏障的智能设计
Mater Today Bio. 2023 May 18;20:100672. doi: 10.1016/j.mtbio.2023.100672. eCollection 2023 Jun.

本文引用的文献

3
Overdiagnosis in breast imaging.乳腺成像中的过度诊断
Breast. 2017 Feb;31:270-273. doi: 10.1016/j.breast.2016.10.011. Epub 2016 Oct 28.
4
How Precisely Can Prostate Cancer Be Managed?前列腺癌究竟能得到多精确的管理?
Int Neurourol J. 2016 Nov;20(Suppl 2):S120-130. doi: 10.5213/inj.1632724.362. Epub 2016 Nov 22.
6
Population-based screening for cancer: hope and hype.基于人群的癌症筛查:希望与炒作。
Nat Rev Clin Oncol. 2016 Sep;13(9):550-65. doi: 10.1038/nrclinonc.2016.50. Epub 2016 Apr 13.
9
Updates in the treatment of ductal carcinoma in situ of the breast.乳腺导管原位癌治疗的进展
Curr Opin Obstet Gynecol. 2016 Feb;28(1):49-58. doi: 10.1097/GCO.0000000000000237.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验