Manak Michael S, Varsanik Jonathan S, Hogan Brad J, Whitfield Matt J, Su Wendell R, Joshi Nikhil, Steinke Nicolai, Min Andrew, Berger Delaney, Saphirstein Robert J, Dixit Gauri, Meyyappan Thiagarajan, Chu Hui-May, Knopf Kevin B, Albala David M, Sant Grannum R, Chander Ashok C
Cellanyx Diagnostics, Beverly, MA, USA.
Anoixis Corporation , Natick, MA, USA.
Nat Biomed Eng. 2018 Oct;2(10):761-772. doi: 10.1038/s41551-018-0285-z. Epub 2018 Sep 17.
The risk stratification of prostate cancer and breast cancer tumours from patients relies on histopathology, selective genomic testing, or on other methods employing fixed formalin tissue samples. However, static biomarker measurements from bulk fixed-tissue samples provide limited accuracy and actionability. Here, we report the development of a live-primary-cell phenotypic-biomarker assay with single-cell resolution, and its validation with prostate cancer and breast cancer tissue samples for the prediction of post-surgical adverse pathology. The assay includes a collagen-I/fibronectin extracellular-matrix formulation, dynamic live-cell biomarkers, a microfluidic device, machine-vision analysis and machine-learning algorithms, and generates predictive scores of adverse pathology at the time of surgery. Predictive scores for the risk stratification of 59 prostate cancer patients and 47 breast cancer patients, with values for area under the curve in receiver-operating-characteristic curves surpassing 80%, support the validation of the assay and its potential clinical applicability for the risk stratification of cancer patients.
对患者前列腺癌和乳腺癌肿瘤的风险分层依赖于组织病理学、选择性基因组检测或其他采用固定福尔马林组织样本的方法。然而,来自大量固定组织样本的静态生物标志物测量提供的准确性和可操作性有限。在此,我们报告了一种具有单细胞分辨率的活原代表型生物标志物检测方法的开发,并使用前列腺癌和乳腺癌组织样本对其进行验证,以预测术后不良病理情况。该检测方法包括I型胶原蛋白/纤连蛋白细胞外基质配方、动态活细胞生物标志物、微流控装置、机器视觉分析和机器学习算法,并在手术时生成不良病理情况的预测分数。对59例前列腺癌患者和47例乳腺癌患者进行风险分层的预测分数,其受试者操作特征曲线下面积值超过80%,支持了该检测方法的验证及其在癌症患者风险分层中的潜在临床适用性。