Parra Nestor Andres, Lu Hong, Choi Jung, Gage Kenneth, Pow-Sang Julio, Gillies Robert J, Balagurunathan Yoganand
Departments of Cancer Physiology.
Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
Tomography. 2019 Mar;5(1):68-76. doi: 10.18383/j.tom.2018.00037.
Prostate cancer identification and assessment of clinical significance continues to be a challenge. Routine multiparametric magnetic resonance imaging has shown to be useful in assessing disease progression. Although dynamic contrast-enhanced imaging (DCE) has the ability to characterize perfusion across time and has shown enormous utility, radiological assessment (Prostate Imaging-Reporting and Data System or PIRADS version 2) has limited its use owing to lack of consistency and nonquantitative nature. In our work, we propose a systematic methodology to quantify perfusion dynamics for the DCE imaging. Using these metrics, 7 different subregions or of the targeted lesions are localized and related to clinical significance. We found that quantitative features describing the habitat based on the late area under the DCE time-activity curve was a good predictor of clinical significance disease. The best predictive feature in the habitat had an AUC of 0.82, CI [0.81-0.83].
前列腺癌的识别及其临床意义的评估仍然是一项挑战。常规多参数磁共振成像已被证明在评估疾病进展方面很有用。尽管动态对比增强成像(DCE)能够表征随时间的灌注情况并已显示出巨大的效用,但由于缺乏一致性和非定量性质,放射学评估(前列腺影像报告和数据系统或PIRADS第2版)限制了其应用。在我们的工作中,我们提出了一种系统的方法来量化DCE成像的灌注动力学。使用这些指标,对目标病变的7个不同子区域进行定位,并将其与临床意义相关联。我们发现,基于DCE时间-活性曲线下的晚期面积描述栖息地的定量特征是临床意义疾病的良好预测指标。栖息地中最佳预测特征的AUC为0.82,CI [0.81 - 0.83]。