Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany.
Phys Chem Chem Phys. 2019 Mar 20;21(12):6622-6634. doi: 10.1039/c8cp05399e.
Photoactive Yellow Protein (PYP) is a bacterial blue light receptor that enters a photocycle after excitation. The intermediate states are formed on time scales ranging from femtoseconds up to hundreds of milliseconds, after which the signaling state with a lifetime of about 1 s is reached. To investigate structural changes and dynamics, we incorporated the SCN IR label at distinct positions of the photoreceptor via cysteine mutation and cyanylation. FT-IR measurements of the SCN label at different sites of the well-established dark state structure of PYP characterized the spectral response of the label to differences in the environment. Under constant blue light irradiation, we observed the formation of the signaling state with significant changes of wavenumber and lineshape of the SCN bands. Thereby we deduced light-induced structural changes in the local environment of the labels. These results were supported by molecular dynamics simulations on PYP providing the solvent accessible surface area (SASA) at the different positions. To follow protein dynamics via the SCN label during the photocycle, we performed step-scan FT-IR measurements with a time resolution of 10 μs. Global analysis yielded similar time constants of τ1 = 70 μs, τ2 = 640 μs, and τ3 > 20 ms for the wild type and τ1 = 36 μs, τ2 = 530 μs, and τ3 > 20 ms for the SCN-labeled mutant PYP-A44C*, a mutant which provided a sufficiently large SCN difference signal to measure step-scan FT-IR spectra. In comparison to the protein (amide, E46) and chromophore bands the dynamics of the SCN label show a different behavior. This result indicates that the local kinetics sensed by the label are different from the global protein kinetics.
光激活黄色蛋白(PYP)是一种细菌蓝光受体,在激发后进入光循环。中间状态的形成时间尺度从飞秒到数百毫秒不等,之后达到寿命约为 1 秒的信号状态。为了研究结构变化和动力学,我们通过半胱氨酸突变和氰基化将 SCN IR 标记物掺入到光受体的不同位置。FT-IR 测量不同位置的 SCN 标记物在 PYP 成熟暗态结构中的光谱响应,表征了标记物对环境差异的光谱响应。在恒定蓝光照射下,我们观察到信号状态的形成,SCN 带的波数和线宽发生显著变化。由此推断出标签环境中的光诱导结构变化。这些结果得到了 PYP 分子动力学模拟的支持,提供了不同位置的溶剂可及表面积(SASA)。为了在光循环期间通过 SCN 标记物跟踪蛋白质动力学,我们进行了具有 10 μs 时间分辨率的分步扫描 FT-IR 测量。全局分析得出了类似的时间常数τ1 = 70 μs、τ2 = 640 μs 和 τ3 > 20 ms 用于野生型和τ1 = 36 μs、τ2 = 530 μs 和 τ3 > 20 ms 用于 SCN 标记的突变体 PYP-A44C*,该突变体提供了足够大的 SCN 差异信号来测量分步扫描 FT-IR 光谱。与蛋白质(酰胺,E46)和生色团带相比,SCN 标记物的动力学表现出不同的行为。这一结果表明,标签所感知的局部动力学与全局蛋白质动力学不同。