Department of Chemistry, Stanford University, Stanford, CA 94305.
Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130-4889.
Proc Natl Acad Sci U S A. 2021 Dec 21;118(51). doi: 10.1073/pnas.2116439118.
Photosynthetic reaction centers (RCs) from were engineered to vary the electronic properties of a key tyrosine (M210) close to an essential electron transfer component via its replacement with site-specific, genetically encoded noncanonical amino acid tyrosine analogs. High fidelity of noncanonical amino acid incorporation was verified with mass spectrometry and X-ray crystallography and demonstrated that RC variants exhibit no significant structural alterations relative to wild type (WT). Ultrafast transient absorption spectroscopy indicates the excited primary electron donor, P*, decays via a ∼4-ps and a ∼20-ps population to produce the charge-separated state PH in all variants. Global analysis indicates that in the ∼4-ps population, PH forms through a two-step process, P*→ PB→ PH, while in the ∼20-ps population, it forms via a one-step P* → PH superexchange mechanism. The percentage of the P* population that decays via the superexchange route varies from ∼25 to ∼45% among variants, while in WT, this percentage is ∼15%. Increases in the P* population that decays via superexchange correlate with increases in the free energy of the PB intermediate caused by a given M210 tyrosine analog. This was experimentally estimated through resonance Stark spectroscopy, redox titrations, and near-infrared absorption measurements. As the most energetically perturbative variant, 3-nitrotyrosine at M210 creates an ∼110-meV increase in the free energy of PB along with a dramatic diminution of the 1,030-nm transient absorption band indicative of PB formation. Collectively, this work indicates the tyrosine at M210 tunes the mechanism of primary electron transfer in the RC.
通过用定点、遗传编码的非天然氨基酸酪氨酸类似物取代关键的酪氨酸(M210),对来自 的光合反应中心(RC)进行了工程改造,以改变其电子性质,该酪氨酸位于一个重要的电子转移组件附近。通过质谱和 X 射线晶体学证实了非天然氨基酸掺入的高保真度,并表明 RC 变体相对于野生型(WT)没有明显的结构改变。超快瞬态吸收光谱表明,激发的初始电子供体 P* 通过 4-ps 和 20-ps 的种群衰减,以在所有变体中产生电荷分离态 PH。全局分析表明,在 4-ps 的种群中,PH 通过两步过程形成,P*→PB→PH,而在 20-ps 的种群中,它通过一步 P*→PH 超交换机制形成。通过超交换途径衰减的 P* 种群的百分比在变体之间从 25%到 45%不等,而在 WT 中,该百分比约为 15%。通过超交换衰减的 P* 种群的增加与 PB 中间体的自由能增加相关,而 PB 中间体的自由能增加是由给定的 M210 酪氨酸类似物引起的。这是通过共振斯塔克光谱、氧化还原滴定和近红外吸收测量实验估计的。作为最具能量扰动性的变体,M210 处的 3-硝基酪氨酸使 PB 的自由能增加了约 110meV,同时 1030nm 瞬态吸收带显著减小,表明 PB 的形成。总的来说,这项工作表明 M210 处的酪氨酸调节 RC 中初始电子转移的机制。