Suppr超能文献

通过遗传密码扩展得到的光合反应中心变体显示 M210 上的 Tyr 调节初始电子转移机制。

Photosynthetic reaction center variants made via genetic code expansion show Tyr at M210 tunes the initial electron transfer mechanism.

机构信息

Department of Chemistry, Stanford University, Stanford, CA 94305.

Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130-4889.

出版信息

Proc Natl Acad Sci U S A. 2021 Dec 21;118(51). doi: 10.1073/pnas.2116439118.

Abstract

Photosynthetic reaction centers (RCs) from were engineered to vary the electronic properties of a key tyrosine (M210) close to an essential electron transfer component via its replacement with site-specific, genetically encoded noncanonical amino acid tyrosine analogs. High fidelity of noncanonical amino acid incorporation was verified with mass spectrometry and X-ray crystallography and demonstrated that RC variants exhibit no significant structural alterations relative to wild type (WT). Ultrafast transient absorption spectroscopy indicates the excited primary electron donor, P*, decays via a ∼4-ps and a ∼20-ps population to produce the charge-separated state PH in all variants. Global analysis indicates that in the ∼4-ps population, PH forms through a two-step process, P*→ PB→ PH, while in the ∼20-ps population, it forms via a one-step P* → PH superexchange mechanism. The percentage of the P* population that decays via the superexchange route varies from ∼25 to ∼45% among variants, while in WT, this percentage is ∼15%. Increases in the P* population that decays via superexchange correlate with increases in the free energy of the PB intermediate caused by a given M210 tyrosine analog. This was experimentally estimated through resonance Stark spectroscopy, redox titrations, and near-infrared absorption measurements. As the most energetically perturbative variant, 3-nitrotyrosine at M210 creates an ∼110-meV increase in the free energy of PB along with a dramatic diminution of the 1,030-nm transient absorption band indicative of PB formation. Collectively, this work indicates the tyrosine at M210 tunes the mechanism of primary electron transfer in the RC.

摘要

通过用定点、遗传编码的非天然氨基酸酪氨酸类似物取代关键的酪氨酸(M210),对来自 的光合反应中心(RC)进行了工程改造,以改变其电子性质,该酪氨酸位于一个重要的电子转移组件附近。通过质谱和 X 射线晶体学证实了非天然氨基酸掺入的高保真度,并表明 RC 变体相对于野生型(WT)没有明显的结构改变。超快瞬态吸收光谱表明,激发的初始电子供体 P* 通过 4-ps 和 20-ps 的种群衰减,以在所有变体中产生电荷分离态 PH。全局分析表明,在 4-ps 的种群中,PH 通过两步过程形成,P*→PB→PH,而在 20-ps 的种群中,它通过一步 P*→PH 超交换机制形成。通过超交换途径衰减的 P* 种群的百分比在变体之间从 25%到 45%不等,而在 WT 中,该百分比约为 15%。通过超交换衰减的 P* 种群的增加与 PB 中间体的自由能增加相关,而 PB 中间体的自由能增加是由给定的 M210 酪氨酸类似物引起的。这是通过共振斯塔克光谱、氧化还原滴定和近红外吸收测量实验估计的。作为最具能量扰动性的变体,M210 处的 3-硝基酪氨酸使 PB 的自由能增加了约 110meV,同时 1030nm 瞬态吸收带显著减小,表明 PB 的形成。总的来说,这项工作表明 M210 处的酪氨酸调节 RC 中初始电子转移的机制。

相似文献

引用本文的文献

1
Genetic Code Expansion: Recent Developments and Emerging Applications.遗传密码扩展:最新进展与新兴应用
Chem Rev. 2025 Jan 22;125(2):523-598. doi: 10.1021/acs.chemrev.4c00216. Epub 2024 Dec 31.
6
Protein Tyrosine Nitration in Plant Nitric Oxide Signaling.植物一氧化氮信号传导中的蛋白质酪氨酸硝化作用
Front Plant Sci. 2022 Mar 11;13:859374. doi: 10.3389/fpls.2022.859374. eCollection 2022.

本文引用的文献

1
Photochemical Mechanism of Light-Driven Fatty Acid Photodecarboxylase.光驱动脂肪酸光脱羧酶的光化学机制
ACS Catal. 2020 Jun 19;10(12):6691-6696. doi: 10.1021/acscatal.0c01684. Epub 2020 May 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验