Suppr超能文献

等离子体催化中的直接热载流子转移

Direct hot-carrier transfer in plasmonic catalysis.

作者信息

Kumar Priyank V, Rossi Tuomas P, Kuisma Mikael, Erhart Paul, Norris David J

机构信息

Optical Materials Engineering Laboratory, ETH Zurich, 8092 Zurich, Switzerland.

Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden.

出版信息

Faraday Discuss. 2019 May 1;214:189-197. doi: 10.1039/c8fd00154e. Epub 2019 Mar 11.

Abstract

Plasmonic metal nanoparticles can concentrate optical energy and enhance chemical reactions on their surfaces. Plasmons can interact with adsorbate orbitals and decay by directly exciting a carrier from the metal to the adsorbate in a process termed the direct-transfer process. Although this process could be useful for enhancing the efficiency of a chemical reaction, it remains poorly understood. Here, we report a preliminary investigation employing time-dependent density-functional theory (TDDFT) calculations to capture this process at a model metal-adsorbate interface formed by a silver nanoparticle (Ag) and a carbon monoxide molecule (CO). Direct hot-electron transfer is observed to occur from the occupied states of Ag to the unoccupied molecular orbitals of CO. We determine the probability of this process and show that it depends on the adsorption site of CO. Our results are expected to aid the design of more efficient metal-molecule interfaces for plasmonic catalysis.

摘要

等离子体金属纳米颗粒能够集中光能并增强其表面的化学反应。等离子体可以与吸附质轨道相互作用,并通过在一个被称为直接转移过程的过程中直接将载流子从金属激发到吸附质而衰减。尽管这个过程可能有助于提高化学反应的效率,但人们对它仍然知之甚少。在这里,我们报告了一项初步研究,该研究采用含时密度泛函理论(TDDFT)计算,以捕捉由银纳米颗粒(Ag)和一氧化碳分子(CO)形成的模型金属-吸附质界面处的这一过程。观察到直接的热电子转移从Ag的占据态发生到CO的未占据分子轨道。我们确定了这个过程的概率,并表明它取决于CO的吸附位点。我们的结果有望有助于设计更高效的用于等离子体催化的金属-分子界面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验