Suppr超能文献

将内阻与微生物电解池的设计和运行决策联系起来。

Linking internal resistance with design and operation decisions in microbial electrolysis cells.

机构信息

Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97333, USA.

Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97333, USA.

出版信息

Environ Int. 2019 May;126:611-618. doi: 10.1016/j.envint.2019.02.056. Epub 2019 Mar 8.

Abstract

The distribution of internal resistance in most microbial electrolysis cells (MECs) remains unclear, which hinders the optimization and scaling up of the technology. In this study, a method for quantifying the effects of design and operation decisions on internal resistance was applied for the first time to MECs. In typical single chamber MECs with carbon cloth electrodes, the internal resistance was distributed as follows: 210 Ω cm for anode, 77 Ω cm for cathode, and 11 Ω cm M for solution. While varying the spacing of the electrodes (<1 cm) had little effect on MEC performance, inducing fluid motion between the electrodes decreased the internal resistance of all MEC components: 150 Ω cm for anode, 47 Ω cm for cathode, and 5.3 Ω cm M for solution. Adjusting the anode to cathode surface area ratio, to balance the internal resistance distribution, resulted in a significant improvement in performance (47 A/m current density, 3.7 L-H/L-liquid volume/day). These results suggest that the quantification of the internal resistance distribution enables the efficient design and operation of MECs. The parameters obtained in this study were also capable of predicting the performance of MECs from some previous studies, demonstrating the effectiveness of this method.

摘要

大多数微生物电解池(MEC)的内阻分布尚不清楚,这阻碍了该技术的优化和放大。本研究首次将一种量化设计和操作决策对内阻影响的方法应用于 MEC。在典型的带有碳布电极的单室 MEC 中,内阻分布如下:阳极 210 Ω·cm,阴极 77 Ω·cm,溶液 11 Ω·cm。虽然改变电极间距(<1 cm)对 MEC 性能影响不大,但在电极之间诱导流体运动可以降低所有 MEC 组件的内阻:阳极 150 Ω·cm,阴极 47 Ω·cm,溶液 5.3 Ω·cm。调整阳极到阴极的表面积比,以平衡内阻分布,可显著提高性能(电流密度 47 A/m,液体体积每天 3.7 L-H/L)。这些结果表明,对内阻分布的量化可以实现 MEC 的高效设计和操作。本研究中获得的参数还能够预测一些先前研究中 MEC 的性能,证明了该方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验