Suppr超能文献

基于空间贝叶斯网络的太平洋小岛海平面上升引发海岸侵蚀预测

Spatial Bayesian Network for predicting sea level rise induced coastal erosion in a small Pacific Island.

机构信息

Griffith Climate Change Response Program, Griffith University, QLD, Australia; School of Engineering and Built Environment, Griffith University, QLD, Australia; Griffith Centre for Coastal Management and Cities Research Institute, Griffith University, QLD, Australia.

School of Engineering and Built Environment, Griffith University, QLD, Australia; Griffith Centre for Coastal Management and Cities Research Institute, Griffith University, QLD, Australia.

出版信息

J Environ Manage. 2019 May 15;238:341-351. doi: 10.1016/j.jenvman.2019.03.008. Epub 2019 Mar 8.

Abstract

An integrated approach combining Bayesian Network with GIS was developed for making a probabilistic prediction of sea level rise induced coastal erosion and assessing the implications of adaptation measures. The Bayesian Network integrates extensive qualitative and quantitative information into a single probabilistic model while GIS explicitly deals with spatial data for inputting, storing, analysing and mapping. The integration of the Bayesian Network with GIS using a cell-by-cell comparison technique (aka map algebra) provides a new tool to perform the probabilistic spatial analysis. The spatial Bayesian Network was utilised for predicting coastal erosion scenarios at the case study location of Tanna Island, Vanuatu in the South Pacific. Based on the Bayesian Network model, a rate of the island shoreline change was predicted probabilistically for each shoreline segment, which was transferred into GIS for visualisation purposes. The spatial distribution of shoreline change prediction results for various sea level rise scenarios was mapped. The outcomes of this work support risk-based adaptation planning and will be further developed to enable the incorporation of high resolution coastal process models, thereby supporting localised land use planning decisions.

摘要

我们开发了一种将贝叶斯网络与 GIS 相结合的综合方法,以对海平面上升引起的海岸侵蚀进行概率预测,并评估适应措施的影响。贝叶斯网络将广泛的定性和定量信息集成到单个概率模型中,而 GIS 则明确处理用于输入、存储、分析和制图的空间数据。通过使用逐个单元比较技术(又名地图代数)将贝叶斯网络与 GIS 集成,提供了执行概率空间分析的新工具。空间贝叶斯网络用于预测南太平洋瓦努阿图塔纳岛案例研究地点的海岸侵蚀情景。基于贝叶斯网络模型,对每个海岸线段的岛屿海岸线变化率进行概率预测,并将其转换为 GIS 进行可视化。绘制了各种海平面上升情景下海岸线变化预测结果的空间分布。这项工作的结果支持基于风险的适应规划,并将进一步开发,以纳入高分辨率海岸过程模型,从而支持本地化的土地利用规划决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验