Suppr超能文献

使用贝叶斯网络对道路安全中的非线性因素相互作用进行数据驱动的风险分析。

Data-driven risk analysis of nonlinear factor interactions in road safety using Bayesian networks.

作者信息

Carrodano Cinzia

机构信息

Geneva School of Economics and Management, University of Geneva, 1205, Geneva, Switzerland.

出版信息

Sci Rep. 2024 Aug 15;14(1):18948. doi: 10.1038/s41598-024-69740-6.

Abstract

This paper aims to demonstrate nonlinear risk factor interactions based on a data-driven approach using a Bayesian network model, providing a road safety use case. Road safety is a critical issue worldwide, with approximately 1.3 million road traffic deaths each year (WHO). Traditional road safety risk assessment methods often analyze individual factors separately; however, these assessments fail to capture the complex dynamics of real-world analysis, in which multiple factors interact through nonlinear relationships. In this study, a novel road safety risk assessment approach that uses a Bayesian network model to explore the nonlinear relationships among road safety risk factors is developed. Through the analysis of extensive crash reports from the state of Maryland, the complex interdependencies among various risk factors and their cumulative impact on road safety are investigated. Our findings show that two combined risk factors have different effects on risk level when considered individually. Two case studies related to human state risk factors and environmental risk factors, such as driving under the influence and snowy roads, as well as fatigue and snowy roads, have an amplified effect on the risk level. The findings highlight the importance of considering nonlinear interactions among risk factors when developing effective and targeted strategies for accident prevention and road safety improvement. This research contributes to the field of road safety by presenting a new methodology for understanding and mitigating road safety hazards.

摘要

本文旨在基于数据驱动的方法,使用贝叶斯网络模型来展示非线性风险因素的相互作用,并提供一个道路安全的应用案例。道路安全是全球范围内的一个关键问题,每年约有130万人死于道路交通(世界卫生组织)。传统的道路安全风险评估方法通常分别分析各个因素;然而,这些评估未能捕捉到现实世界分析中的复杂动态,即多个因素通过非线性关系相互作用。在本研究中,开发了一种新颖的道路安全风险评估方法,该方法使用贝叶斯网络模型来探索道路安全风险因素之间的非线性关系。通过对马里兰州大量碰撞报告的分析,研究了各种风险因素之间复杂的相互依存关系及其对道路安全的累积影响。我们的研究结果表明,两个组合风险因素单独考虑时对风险水平有不同的影响。两个与人类状态风险因素和环境风险因素相关的案例研究,如酒后驾车和雪地道路,以及疲劳和雪地道路,对风险水平有放大作用。这些发现突出了在制定有效的针对性事故预防和道路安全改善策略时考虑风险因素之间非线性相互作用的重要性。本研究通过提出一种理解和减轻道路安全危害的新方法,为道路安全领域做出了贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fbb/11327359/0a58a38c55c9/41598_2024_69740_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验