From the Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40536 and.
the Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710.
J Biol Chem. 2019 Apr 26;294(17):6831-6842. doi: 10.1074/jbc.RA118.006595. Epub 2019 Mar 11.
Mitochondria are major sites of energy metabolism that influence numerous cellular events, including immunity and cancer development. Previously, we reported that the mitochondrion-specific antioxidant enzyme, manganese-containing superoxide dismutase (MnSOD), has dual roles in early- and late-carcinogenesis stages. However, how defective MnSOD impacts the chain of events that lead to cell transformation in pathologically normal epidermal cells that have been exposed to carcinogens is unknown. Here, we show that UVB radiation causes nitration and inactivation of MnSOD leading to mitochondrial injury and mitophagy. In keratinocytes, exposure to UVB radiation decreased mitochondrial oxidative phosphorylation, increased glycolysis and the expression of autophagy-related genes, and enhanced AKT Ser/Thr kinase (AKT) phosphorylation and cell growth. Interestingly, UVB initiated a prosurvival mitophagy response by mitochondria-mediated reactive oxygen species (ROS) signaling via the mammalian target of the mTOR complex 2 (mTORC2) pathway. Knockdown of rictor but not raptor abrogated UVB-induced mitophagy responses. Furthermore, fractionation and proximity-ligation assays reveal that ROS-mediated mTOC2 activation in mitochondria is necessary for UVB-induced mitophagy. Importantly, pretreatment with the MnSOD mimic MnTnBuOE-2-PyP (MnP) attenuates mTORC2 activation and suppresses UVB-induced mitophagy. UVB radiation exposure also increased cell growth as assessed by soft-agar colony survival and cell growth assays, and pretreatment with MnP or the known autophagy inhibitor 3-methyladenine abrogated UVB-induced cell growth. These results indicate that MnSOD is a major redox regulator that maintains mitochondrial health and show that UVB-mediated MnSOD inactivation promotes mitophagy and thereby prevents accumulation of damaged mitochondria.
线粒体是影响包括免疫和癌症发展在内的众多细胞事件的主要能量代谢场所。以前,我们报告称,线粒体特异性抗氧化酶锰过氧化物酶(MnSOD)在早期和晚期致癌阶段具有双重作用。然而,功能失调的 MnSOD 如何影响已暴露于致癌物的病理性正常表皮细胞中导致细胞转化的事件链尚不清楚。在这里,我们表明,UVB 辐射会导致 MnSOD 的硝化和失活,从而导致线粒体损伤和自噬。在角质形成细胞中,暴露于 UVB 辐射会降低线粒体氧化磷酸化,增加糖酵解和自噬相关基因的表达,并增强 AKT 丝氨酸/苏氨酸激酶(AKT)磷酸化和细胞生长。有趣的是,UVB 通过哺乳动物雷帕霉素靶蛋白复合物 2(mTORC2)途径的线粒体介导的活性氧(ROS)信号引发了一种促生存的自噬反应。敲低rictor 但不是 raptor 可消除 UVB 诱导的自噬反应。此外,分级分离和接近连接测定显示,ROS 介导的 mTORC2 在线粒体中的激活对于 UVB 诱导的自噬是必需的。重要的是,MnSOD 模拟物 MnTnBuOE-2-PyP(MnP)预处理可减弱 mTORC2 的激活并抑制 UVB 诱导的自噬。UVB 辐射暴露还通过软琼脂集落存活和细胞生长测定评估的细胞生长增加,并且 MnP 或已知的自噬抑制剂 3-甲基腺嘌呤预处理可消除 UVB 诱导的细胞生长。这些结果表明,MnSOD 是一种主要的氧化还原调节剂,可维持线粒体健康,并表明 UVB 介导的 MnSOD 失活可促进自噬,从而防止受损线粒体的积累。
Cell Rep. 2019-11-5
Free Radic Biol Med. 2017-8-24
Antioxid Redox Signal. 2014-5-20
Autophagy. 2020-11
Photochem Photobiol Sci. 2025-3
Front Cell Dev Biol. 2022-7-15
Free Radic Biol Med. 2022-2-1
Plant Cell Physiol. 2021-5-11
Aging (Albany NY). 2020-7-13