West Anderson, Hensen Bas, Jouan Alexis, Tanttu Tuomo, Yang Chih-Hwan, Rossi Alessandro, Gonzalez-Zalba M Fernando, Hudson Fay, Morello Andrea, Reilly David J, Dzurak Andrew S
Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales, Australia.
ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, New South Wales, Australia.
Nat Nanotechnol. 2019 May;14(5):437-441. doi: 10.1038/s41565-019-0400-7. Epub 2019 Mar 11.
Electron spins in silicon quantum dots provide a promising route towards realizing the large number of coupled qubits required for a useful quantum processor. For the implementation of quantum algorithms and error detection, qubit measurements are ideally performed in a single shot, which is presently achieved using on-chip charge sensors, capacitively coupled to the quantum dots. However, as the number of qubits is increased, this approach becomes impractical due to the footprint and complexity of the charge sensors, combined with the required proximity to the quantum dots. Alternatively, the spin state can be measured directly by detecting the complex impedance of spin-dependent electron tunnelling between quantum dots. This can be achieved using radiofrequency reflectometry on a single gate electrode defining the quantum dot itself, significantly reducing the gate count and architectural complexity, but thus far it has not been possible to achieve single-shot spin readout using this technique. Here, we detect single electron tunnelling in a double quantum dot and demonstrate that gate-based sensing can be used to read out the electron spin state in a single shot, with an average readout fidelity of 73%. The result demonstrates a key step towards the readout of many spin qubits in parallel, using a compact gate design that will be needed for a large-scale semiconductor quantum processor.
硅量子点中的电子自旋为实现实用量子处理器所需的大量耦合量子比特提供了一条很有前景的途径。对于量子算法的实现和错误检测,理想情况下量子比特测量应单次完成,目前这是通过与量子点电容耦合的片上电荷传感器来实现的。然而,随着量子比特数量的增加,由于电荷传感器的占用面积和复杂性,再加上需要靠近量子点,这种方法变得不切实际。另一种方法是,通过检测量子点之间自旋相关电子隧穿的复阻抗来直接测量自旋状态。这可以通过对定义量子点本身的单个栅电极进行射频反射测量来实现,从而显著减少栅极数量和架构复杂性,但到目前为止,使用这种技术还无法实现单次自旋读出。在此,我们检测了双量子点中的单电子隧穿,并证明基于栅极的传感可用于单次读出电子自旋状态,平均读出保真度为73%。该结果展示了朝着使用大规模半导体量子处理器所需的紧凑栅极设计并行读出多个自旋量子比特迈出的关键一步。