Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, 2052, Australia.
London Centre for Nanotechnology, UCL, 17-19 Gordon St, London, WC1H 0AH, UK.
Nat Commun. 2018 Oct 30;9(1):4370. doi: 10.1038/s41467-018-06039-x.
Silicon quantum dot spin qubits provide a promising platform for large-scale quantum computation because of their compatibility with conventional CMOS manufacturing and the long coherence times accessible using Si enriched material. A scalable error-corrected quantum processor, however, will require control of many qubits in parallel, while performing error detection across the constituent qubits. Spin resonance techniques are a convenient path to parallel two-axis control, while Pauli spin blockade can be used to realize local parity measurements for error detection. Despite this, silicon qubit implementations have so far focused on either single-spin resonance control, or control and measurement via voltage-pulse detuning in the two-spin singlet-triplet basis, but not both simultaneously. Here, we demonstrate an integrated device platform incorporating a silicon metal-oxide-semiconductor double quantum dot that is capable of single-spin addressing and control via electron spin resonance, combined with high-fidelity spin readout in the singlet-triplet basis.
硅量子点自旋量子位由于其与传统 CMOS 制造的兼容性以及使用富硅材料可实现的长相干时间,为大规模量子计算提供了一个有前途的平台。然而,可扩展的纠错量子处理器将需要并行控制许多量子位,同时在组成量子位上执行错误检测。自旋共振技术是实现两轴并行控制的便捷途径,而泡利自旋阻塞可用于实现局部奇偶校验测量以进行错误检测。尽管如此,硅量子位的实现迄今为止主要集中在单自旋共振控制上,或者通过在双自旋单重态-三重态基中进行电压脉冲失谐来控制和测量,但不能同时进行。在这里,我们展示了一种集成器件平台,该平台包含一个硅金属氧化物半导体双量子点,能够通过电子自旋共振进行单自旋寻址和控制,并结合在单重态-三重态基中的高保真度自旋读出。