Ecology Department, Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
Nat Microbiol. 2019 May;4(5):864-875. doi: 10.1038/s41564-019-0384-y. Epub 2019 Mar 11.
Beneficial microbial associations enhance the fitness of most living organisms, and wood-feeding insects offer some of the most striking examples of this. Odontotaenius disjunctus is a wood-feeding beetle that possesses a digestive tract with four main compartments, each of which contains well-differentiated microbial populations, suggesting that anatomical properties and separation of these compartments may enhance energy extraction from woody biomass. Here, using integrated chemical analyses, we demonstrate that lignocellulose deconstruction and fermentation occur sequentially across compartments, and that selection for microbial groups and their metabolic pathways is facilitated by gut anatomical features. Metaproteogenomics showed that higher oxygen concentration in the midgut drives lignocellulose depolymerization, while a thicker gut wall in the anterior hindgut reduces oxygen diffusion and favours hydrogen accumulation, facilitating fermentation, homoacetogenesis and nitrogen fixation. We demonstrate that depolymerization continues in the posterior hindgut, and that the beetle excretes an energy- and nutrient-rich product on which its offspring subsist and develop. Our results show that the establishment of beneficial microbial partners within a host requires both the acquisition of the microorganisms and the formation of specific habitats within the host to promote key microbial metabolic functions. Together, gut anatomical properties and microbial functional assembly enable lignocellulose deconstruction and colony subsistence on an extremely nutrient-poor diet.
有益的微生物共生关系增强了大多数生物体的适应性,而取食木材的昆虫则提供了这方面最显著的例子。异喙切梢小蠹是一种取食木材的甲虫,其消化道有四个主要的隔间,每个隔间都含有分化良好的微生物种群,这表明这些隔间的解剖结构特性和分离可能增强了对木质生物质的能量提取。在这里,我们使用综合化学分析方法,证明木质纤维素的解构和发酵是在隔间之间依次进行的,而肠道解剖结构特征有助于微生物群及其代谢途径的选择。宏蛋白质组学研究表明,中肠内较高的氧气浓度促进木质纤维素的解聚,而在前后肠内较厚的肠壁减少氧气扩散,有利于氢的积累,从而促进发酵、同型乙酰生成和固氮。我们证明,解聚在后肠继续进行,并且甲虫排泄出一种富含能量和营养的产物,其后代以此为食并发育。我们的研究结果表明,在宿主内建立有益的微生物共生关系需要同时获得微生物和在宿主内形成特定的栖息地,以促进关键的微生物代谢功能。肠道解剖结构特性和微生物功能组装共同使木质纤维素解构和菌落能够在极其缺乏营养的饮食中生存和繁殖。