Saborowski Anna, Wolff Katharina, Spielberg Steffi, Beer Benedikt, Hartleben Björn, Erlangga Zulrahman, Becker Diana, Dow Lukas E, Marhenke Silke, Woller Norman, Unger Kristian, Schirmacher Peter, Manns Michael P, Marquardt Jens U, Vogel Arndt, Saborowski Michael
Department of Gastroenterology, Hepatology, and Endocrinology Hannover Medical School Hannover Germany.
Institute of Pathology Hannover Medical School Hannover Germany.
Hepatol Commun. 2019 Feb 5;3(3):423-436. doi: 10.1002/hep4.1312. eCollection 2019 Mar.
The rising incidence of cholangiocarcinoma (CCA) coupled with a low 5-year survival rate that remains below 10% delineates the urgent need for more effective treatment strategies. Although several recent studies provided detailed information on the genetic landscape of this fatal malignancy, versatile model systems to functionally dissect the immediate clinical relevance of the identified genetic alterations are still missing. To enhance our understanding of CCA pathophysiology and facilitate rapid functional annotation of putative CCA driver and tumor maintenance genes, we developed a tractable murine CCA model by combining the cyclization recombination (Cre)-lox system, RNA interference, and clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) technology with liver organoids, followed by subsequent transplantation into immunocompetent, syngeneic mice. Histologically, resulting tumors displayed cytokeratin 19-positive ductal structures surrounded by a desmoplastic stroma-hallmark features of human CCAs. Despite their initial biliary phenotype organoids retained the plasticity to induce a broader differentiation spectrum of primary liver cancers following transplantation into recipient mice, depending on their genetic context. Thus, the organoid system combines the advantage of using nontransformed, premalignant cells to recapitulate liver tumorigenesis as a multistep process, with the advantage of a reproducible and expandable cell culture system that abrogates the need for recurrent isolations of primary cells. Genetically modified liver organoids are able to transform into histologically accurate CCAs. Depending on the oncogenic context, they are also able to give rise to liver cancers that show features of hepatocellular carcinomas. The model can be used to functionally explore candidate cancer genes of primary liver cancers in immunocompetent animals and evaluate novel treatment regimens.
胆管癌(CCA)发病率的上升,加之其5年生存率仍低于10%,凸显了对更有效治疗策略的迫切需求。尽管最近的几项研究提供了关于这种致命恶性肿瘤基因图谱的详细信息,但仍缺乏能够从功能上剖析已鉴定基因改变的直接临床相关性的通用模型系统。为了加深我们对CCA病理生理学的理解,并促进对假定的CCA驱动基因和肿瘤维持基因进行快速功能注释,我们通过将环化重组(Cre)-lox系统、RNA干扰以及成簇规律间隔短回文重复序列/CRISPR相关蛋白9(CRISPR/Cas9)技术与肝脏类器官相结合,随后移植到具有免疫活性的同基因小鼠体内,开发了一种易于处理的小鼠CCA模型。从组织学上看,所形成的肿瘤呈现出细胞角蛋白19阳性的导管结构,周围环绕着促结缔组织增生性基质,这是人类CCA的标志性特征。尽管其最初具有胆管表型,但类器官在移植到受体小鼠后,根据其基因背景,仍保留诱导原发性肝癌更广泛分化谱的可塑性。因此,类器官系统结合了使用未转化的癌前细胞来概括肝脏肿瘤发生这一多步骤过程的优势,以及可重复且可扩展的细胞培养系统的优势,该系统无需反复分离原代细胞。基因改造的肝脏类器官能够转化为组织学上准确的CCA。根据致癌背景,它们还能够产生具有肝细胞癌特征的肝癌。该模型可用于在具有免疫活性的动物中从功能上探索原发性肝癌的候选癌基因,并评估新的治疗方案。