Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.
Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
Bioinformatics. 2019 Oct 1;35(19):3821-3823. doi: 10.1093/bioinformatics/btz166.
Making use of accumulated genetic knowledge for clinical practice is our next goal in human genetics. Here we introduce GREP (Genome for REPositioning drugs), a standalone python software to quantify an enrichment of the user-defined set of genes in the target of clinical indication categories and to capture potentially repositionable drugs targeting the gene set. We show that genes identified by the large-scale genome-wide association studies were robustly enriched in the approved drugs to treat the trait of interest. This enrichment analysis was also highly applicable to other sets of biological genes such as those identified by gene expression studies and genes somatically mutated in cancers. This software should accelerate investigators to reposition drugs to other indications with the guidance of known genomics.
GREP is available at https://github.com/saorisakaue/GREP as a python source code.
Supplementary data are available at Bioinformatics online.
利用积累的遗传知识为临床实践服务是人类遗传学的下一个目标。在这里,我们介绍了 GREP(用于重新定位药物的基因组),这是一个独立的 Python 软件,可以定量评估用户定义的基因集合在临床适应症目标中的富集程度,并捕获针对该基因集合的潜在可重新定位药物。我们发现,通过大规模全基因组关联研究鉴定的基因在治疗目标特征的批准药物中得到了稳健的富集。这种富集分析也非常适用于其他生物基因集,如通过基因表达研究和癌症中体细胞突变的基因鉴定的基因集。该软件应在已知基因组学的指导下,加速研究人员将药物重新定位到其他适应症。
GREP 可在 https://github.com/saorisakaue/GREP 作为 Python 源代码使用。
补充数据可在生物信息学在线获得。