Suppr超能文献

更智能的前列腺癌筛查。

Smarter screening for prostate cancer.

机构信息

University Health Network-Toronto General Hospital and Princess Margaret Cancer Center, Division of Urology, University of Toronto, 610 University Avenue, 3-130, Toronto, ON, M6G 2M9, Canada.

出版信息

World J Urol. 2019 Jun;37(6):991-999. doi: 10.1007/s00345-019-02719-5. Epub 2019 Mar 11.

Abstract

PURPOSE

Prostate cancer is the second commonest cancer among men. In the large European Randomized Study of Screening for Prostate Cancer (ERSPC) trial, prostate-specific antigen (PSA) screening has been shown to substantially reduce prostate cancer mortality. However, PSA screening is known to lead to more unnecessary prostate biopsies and over-diagnosis of clinically insignificant cancer. Therefore, it is imperative that smarter screening methods be developed to overcome the weaknesses of PSA screening. This review explores the novel screening tools that are available.

METHODS

A comprehensive literature search was performed using PubMed regarding newer biomarkers, imaging techniques and risk-predicting models that are used to screen for prostate cancer in mainly biopsy-naïve men.

RESULTS

Novel serum-based models like 4Kscore and prostate health index (PHI) are generally better than PSA alone in detecting clinically significant cancer. Similarly, urine-based biomarkers like prostate cancer antigen 3 (PCA3) and HOXC6/DLX1 have been shown to be more accurate than PSA screening. More recently, multiparametric magnetic resonance imaging (mpMRI) is gaining popularity for its ability to detect clinically significant cancer. There is also evidence that combining individual tests to develop prediction models can reliably predict high-risk prostate cancers while reducing the number of unnecessary biopsies. Combinations such as the Stockholm-3 model (STHLM3) and other novel combinations are presented in this review.

CONCLUSION

While we continue to find the smarter screening methods that are reliable, precise, and cost-effective, we continue to advocate shared decision-making in prostate cancer screening in order to work in our patients' best interests.

摘要

目的

前列腺癌是男性中第二常见的癌症。在大型欧洲前列腺癌筛查随机研究(ERSPC)试验中,已经证明前列腺特异性抗原(PSA)筛查可以显著降低前列腺癌死亡率。然而,PSA 筛查已知会导致更多不必要的前列腺活检和对临床意义不大的癌症的过度诊断。因此,开发更智能的筛查方法来克服 PSA 筛查的弱点势在必行。本文综述了现有的新型筛查工具。

方法

使用 PubMed 对主要为活检初筛的男性进行了关于新型生物标志物、成像技术和风险预测模型的全面文献检索,以用于前列腺癌筛查。

结果

新型血清模型,如 4Kscore 和前列腺健康指数(PHI),在检测临床显著癌症方面通常优于 PSA 单独检测。同样,尿液生物标志物如前列腺癌抗原 3(PCA3)和 HOXC6/DLX1 也被证明比 PSA 筛查更准确。最近,多参数磁共振成像(mpMRI)因其能够检测临床显著癌症而越来越受欢迎。还有证据表明,将个体测试结合起来开发预测模型可以可靠地预测高危前列腺癌,同时减少不必要的活检数量。本文综述了如斯德哥尔摩 3 模型(STHLM3)和其他新型组合等组合。

结论

在我们继续寻找可靠、精确和具有成本效益的更智能的筛查方法的同时,我们继续倡导在前列腺癌筛查中进行共同决策,以符合患者的最佳利益。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验