Velpula Gangamallaiah, Phillipson Roald, Lian Jian Xiang, Cornil David, Walke Peter, Verguts Ken, Brems Steven, Uji-I Hiroshi, De Gendt Stefan, Beljonne David, Lazzaroni Roberto, Mali Kunal S, De Feyter Steven
Division of Molecular Imaging and Photonics, Department of Chemistry , KU Leuven , Celestijnenlaan, 200F , B-3001 Leuven , Belgium.
Laboratory for Chemistry of Novel Materials , University of Mons , Place du Parc 20 , 7000 Mons , Belgium.
ACS Nano. 2019 Mar 26;13(3):3512-3521. doi: 10.1021/acsnano.8b09768. Epub 2019 Mar 12.
Graphene-based two-dimensional (2D) materials are promising candidates for a number of different energy applications. A particularly interesting one is in next generation supercapacitors, where graphene is being explored as an electrode material in combination with room temperature ionic liquids (ILs) as electrolytes. Because the amount of energy that can be stored in such supercapacitors critically depends on the electrode-electrolyte interface, there is considerable interest in understanding the structure and properties of the graphene/IL interface. Here, we report the changes in the properties of graphene upon adsorption of a homologous series of alkyl imidazolium tetrafluoroborate ILs using a combination of experimental and theoretical tools. Raman spectroscopy reveals that these ILs cause n-type doping of graphene, and the magnitude of doping increases with increasing cation chain length despite the expected decrease in the density of surface-adsorbed ions. Molecular modeling simulations show that doping originates from the changes in the electrostatic potential at the graphene/IL interface. The findings described here represent an important step in developing a comprehensive understanding of the graphene/IL interface.
基于石墨烯的二维(2D)材料在许多不同的能源应用中都是很有前景的候选材料。一个特别有趣的应用是在下一代超级电容器中,石墨烯正被探索作为电极材料与室温离子液体(ILs)作为电解质相结合。因为能存储在这种超级电容器中的能量数量关键取决于电极 - 电解质界面,所以人们对理解石墨烯/IL界面的结构和性质有着浓厚兴趣。在此,我们使用实验和理论工具相结合的方法,报告了一系列同系烷基咪唑四氟硼酸盐离子液体吸附到石墨烯上后石墨烯性质的变化。拉曼光谱表明这些离子液体导致石墨烯的n型掺杂,并且尽管表面吸附离子的密度预期会降低,但掺杂程度随着阳离子链长度的增加而增加。分子模拟显示掺杂源于石墨烯/IL界面静电势的变化。这里描述的研究结果代表了在全面理解石墨烯/IL界面方面迈出的重要一步。