Suppr超能文献

导师-学员匹配的双边分配——算法和操纵策略。

Two-Sided Matching for mentor-mentee allocations-Algorithms and manipulation strategies.

机构信息

College of Information Science and Technology, University of Nebraska at Omaha, Omaha, NE, United States of America.

出版信息

PLoS One. 2019 Mar 12;14(3):e0213323. doi: 10.1371/journal.pone.0213323. eCollection 2019.

Abstract

In scenarios where allocations are determined by participant's preferences, Two-Sided Matching is a well-established approach with applications in College Admissions, School Choice, and Mentor-Mentee matching problems. In such a context, participants in the matching have preferences with whom they want to be matched with. This article studies two important concepts in Two-Sided Matching: multiple objectives when finding a solution, and manipulation of preferences by participants. We use real data sets from a Mentor-Mentee program for the evaluation to provide insight on realistic effects and implications of the two concepts. In the first part of the article, we consider the quality of solutions found by different algorithms using a variety of solution criteria. Most current algorithms focus on one criterion (number of participants matched), while not directly taking into account additional objectives. Hence, we evaluate different algorithms, including multi-objective heuristics, and the resulting trade-offs. The evaluation shows that existing algorithms for the considered problem sizes perform similarly well and close to the optimal solution, yet multi-objective heuristics provide the additional benefit of yielding solutions with better quality on multiple criteria. In the second part, we consider the effects of different types of preference manipulation on the participants and the overall solution. Preference manipulation is a concept that is well established in theory, yet its practical effects on the participants and the solution quality are less clear. Hence, we evaluate the effects of three manipulation strategies on the participants and the overall solution quality, and investigate if the effects depend on the used solution algorithm as well.

摘要

在分配由参与者偏好决定的情况下,双边匹配是一种成熟的方法,在大学招生、学校选择和导师-学员匹配问题中得到了广泛应用。在这种情况下,匹配中的参与者都有自己想要与之匹配的偏好。本文研究了双边匹配中的两个重要概念:在寻找解决方案时的多目标和参与者偏好的操纵。我们使用来自导师-学员计划的真实数据集进行评估,以提供对这两个概念的实际影响和含义的深入了解。在本文的第一部分,我们考虑了不同算法使用各种解决方案标准找到的解决方案的质量。当前大多数算法都只关注一个标准(匹配的参与者人数),而没有直接考虑其他目标。因此,我们评估了不同的算法,包括多目标启发式算法,并考虑了由此产生的权衡。评估结果表明,针对所考虑的问题规模的现有算法性能相似,且接近最优解决方案,但多目标启发式算法提供了在多个标准上生成质量更高的解决方案的额外优势。在第二部分,我们考虑了不同类型的偏好操纵对参与者和整体解决方案的影响。偏好操纵是一个在理论上已经得到很好确立的概念,但它对参与者和解决方案质量的实际影响还不太清楚。因此,我们评估了三种操纵策略对参与者和整体解决方案质量的影响,并研究了这些影响是否取决于所使用的解决方案算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25aa/6413920/21c68d372611/pone.0213323.g001.jpg

相似文献

1
Two-Sided Matching for mentor-mentee allocations-Algorithms and manipulation strategies.
PLoS One. 2019 Mar 12;14(3):e0213323. doi: 10.1371/journal.pone.0213323. eCollection 2019.
2
Finding optimal mentor-mentee matches: A case study in applied two-sided matching.
Heliyon. 2018 Jun 20;4(6):e00634. doi: 10.1016/j.heliyon.2018.e00634. eCollection 2018 Jun.
3
Evaluation of a Speed Mentoring Program: Achievement of Short-Term Mentee Goals and Potential for Longer-Term Relationships.
Acad Pediatr. 2017 Jul;17(5):537-543. doi: 10.1016/j.acap.2016.12.012. Epub 2016 Dec 28.
5
Factors associated with mentor satisfaction among teaching and learning curriculum program participants.
Curr Pharm Teach Learn. 2018 Apr;10(4):427-432. doi: 10.1016/j.cptl.2018.01.001. Epub 2018 Jan 12.
7
The value of speed mentoring in a pediatric academic organization.
Acad Pediatr. 2014 Jul-Aug;14(4):335-40. doi: 10.1016/j.acap.2014.02.009. Epub 2014 May 6.
9
Characterization of Mentorship Programs in Departments of Surgery in the United States.
JAMA Surg. 2016 Oct 1;151(10):900-906. doi: 10.1001/jamasurg.2016.1670.
10
Speed Mentoring: An Innovative Method to Meet the Needs of the Young Surgeon.
J Surg Educ. 2017 Nov-Dec;74(6):1007-1011. doi: 10.1016/j.jsurg.2017.05.004. Epub 2017 May 23.

引用本文的文献

1
Analysis of the MUII-plus mentorship programme: reflections of Fellows' experiences and lessons for other programmes.
AAS Open Res. 2021 Mar 16;3:37. doi: 10.12688/aasopenres.13091.2. eCollection 2020.

本文引用的文献

1
Finding optimal mentor-mentee matches: A case study in applied two-sided matching.
Heliyon. 2018 Jun 20;4(6):e00634. doi: 10.1016/j.heliyon.2018.e00634. eCollection 2018 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验