Suppr超能文献

鉴定导致亚洲裔儿童发生新生儿糖尿病的磺酰脲受体 1(ABCC8)激活突变的功能特征。

Functional characterization of activating mutations in the sulfonylurea receptor 1 (ABCC8) causing neonatal diabetes mellitus in Asian Indian children.

机构信息

Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Advanced Centre for Genomics of Type 2 Diabetes and Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, IDF Centre of Education, Chennai, India.

Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon.

出版信息

Pediatr Diabetes. 2019 Jun;20(4):397-407. doi: 10.1111/pedi.12843. Epub 2019 Apr 2.

Abstract

BACKGROUND

Gain-of-function of ATP-sensitive K (K ) channels because of mutations in the genes encoding SUR1 (ABCC8) or Kir6.2 (KCNJ11) is a major cause of neonatal diabetes mellitus (NDM). Our aim is to determine molecular defects in K channels caused by ABCC8 mutations in Asian Indian children with NDM by in vitro functional studies.

METHODS

Wild-type (WT; NM_000352.4) or mutant sulfonylurea receptor 1 (SUR1) and Kir6.2 were co-expressed in COSm6 cells. Biogenesis efficiency and surface expression of mutant channels were assessed by immunoblotting and immunostaining. The response of mutant channels to cytoplasmic ATP and ADP was assessed by inside-out patch-clamp recordings. The response of mutant channels to known K inhibitors in intact cells were determined by Rb efflux assays.

RESULTS

Five SUR1 missense mutations, D212Y, P254S, R653Q, R992C, and Q1224H, were studied and showed increased activity in MgATP/MgADP. Two of the mutants, D212Y and P254S, also showed reduced response to ATP inhibition, as well as markedly reduced surface expression. Moreover, all five mutants were inhibited by the K channel inhibitors glibenclamide and carbamazepine.

CONCLUSIONS

The study shows the mechanisms by which five SUR1 mutations identified in Asian Indian NDM patients affect K channel function to cause the disease. The reduced ATP sensitivity caused by the D212Y and P254S mutations in the L0 of SUR1 provides novel insight into the role of L0 in channel inhibition by ATP. The results also explain why sulfonylurea therapy is effective in two patients and inform how it should be effective for the other three patients.

摘要

背景

由于编码 SUR1(ABCC8)或 Kir6.2(KCNJ11)的基因突变导致 ATP 敏感性钾(K )通道功能获得,是新生儿糖尿病(NDM)的主要原因。我们的目的是通过体外功能研究,确定亚洲印度 NDM 儿童 ABCC8 突变引起的 K 通道的分子缺陷。

方法

野生型(WT;NM_000352.4)或突变磺酰脲受体 1(SUR1)和 Kir6.2 在 COSm6 细胞中共同表达。通过免疫印迹和免疫染色评估突变通道的生物发生效率和表面表达。通过内向外膜片钳记录评估突变通道对细胞质 ATP 和 ADP 的反应。通过 Rb 外排测定确定突变通道对已知 K 抑制剂在完整细胞中的反应。

结果

研究了 5 种 SUR1 错义突变,D212Y、P254S、R653Q、R992C 和 Q1224H,发现它们在 MgATP/MgADP 中活性增加。两种突变体,D212Y 和 P254S,也显示出对 ATP 抑制的反应降低,以及表面表达明显减少。此外,所有 5 种突变体均被 K 通道抑制剂格列本脲和卡马西平抑制。

结论

该研究表明,在亚洲印度 NDM 患者中发现的 5 种 SUR1 突变影响 K 通道功能导致疾病的机制。SUR1 的 L0 中的 D212Y 和 P254S 突变导致的 ATP 敏感性降低,为 L0 在 ATP 抑制通道中的作用提供了新的见解。结果还解释了为什么磺酰脲治疗对 2 名患者有效,并说明了它应该如何对其他 3 名患者有效。

相似文献

2
New insights into K channel gene mutations and neonatal diabetes mellitus.
Nat Rev Endocrinol. 2020 Jul;16(7):378-393. doi: 10.1038/s41574-020-0351-y. Epub 2020 May 6.
3
Molecular Genetics, Clinical Characteristics, and Treatment Outcomes of K-Channel Neonatal Diabetes Mellitus in Vietnam National Children's Hospital.
Front Endocrinol (Lausanne). 2021 Sep 9;12:727083. doi: 10.3389/fendo.2021.727083. eCollection 2021.
4
Molecular and clinical features of K -channel neonatal diabetes mellitus in Japan.
Pediatr Diabetes. 2017 Nov;18(7):532-539. doi: 10.1111/pedi.12447. Epub 2016 Sep 29.
7
Pharmacological Correction of Trafficking Defects in ATP-sensitive Potassium Channels Caused by Sulfonylurea Receptor 1 Mutations.
J Biol Chem. 2016 Oct 14;291(42):21971-21983. doi: 10.1074/jbc.M116.749366. Epub 2016 Aug 29.
8
Clinical and molecular characterization of neonatal diabetes and monogenic syndromic diabetes in Asian Indian children.
Clin Genet. 2013 May;83(5):439-45. doi: 10.1111/j.1399-0004.2012.01939.x. Epub 2012 Aug 20.

引用本文的文献

2
3
Association of ABCC8 gene variants with response to sulfonylurea in type 2 diabetes mellitus.
J Diabetes Metab Disord. 2023 Jan 28;22(1):649-655. doi: 10.1007/s40200-023-01189-2. eCollection 2023 Jun.
4
Structural Insights into ATP-Sensitive Potassium Channel Mechanics: A Role of Intrinsically Disordered Regions.
J Chem Inf Model. 2023 Mar 27;63(6):1806-1818. doi: 10.1021/acs.jcim.2c01196. Epub 2023 Feb 6.
5
Functional Regulation of K Channels and Mutant Insight Into Clinical Therapeutic Strategies in Cardiovascular Diseases.
Front Pharmacol. 2022 Jun 28;13:868401. doi: 10.3389/fphar.2022.868401. eCollection 2022.
6
Beta-Cell Ion Channels and Their Role in Regulating Insulin Secretion.
Compr Physiol. 2021 Oct 12;11(4):1-21. doi: 10.1002/cphy.c210004.
7
Tunisian Maturity-Onset Diabetes of the Young: A Short Review and a New Molecular and Clinical Investigation.
Front Endocrinol (Lausanne). 2021 Jul 29;12:684018. doi: 10.3389/fendo.2021.684018. eCollection 2021.
8
New insights into K channel gene mutations and neonatal diabetes mellitus.
Nat Rev Endocrinol. 2020 Jul;16(7):378-393. doi: 10.1038/s41574-020-0351-y. Epub 2020 May 6.
9
Ion Channels of the Islets in Type 2 Diabetes.
J Mol Biol. 2020 Mar 6;432(5):1326-1346. doi: 10.1016/j.jmb.2019.08.014. Epub 2019 Aug 30.

本文引用的文献

2
Neonatal Diabetes Mellitus: An Update on Diagnosis and Management.
Clin Perinatol. 2018 Mar;45(1):41-59. doi: 10.1016/j.clp.2017.10.006. Epub 2017 Dec 16.
3
Methods for Characterizing Disease-Associated ATP-Sensitive Potassium Channel Mutations.
Methods Mol Biol. 2018;1684:85-104. doi: 10.1007/978-1-4939-7362-0_8.
4
Anti-diabetic drug binding site in a mammalian K channel revealed by Cryo-EM.
Elife. 2017 Oct 24;6:e31054. doi: 10.7554/eLife.31054.
5
Neonatal Diabetes and the K Channel: From Mutation to Therapy.
Trends Endocrinol Metab. 2017 May;28(5):377-387. doi: 10.1016/j.tem.2017.02.003. Epub 2017 Mar 3.
7
Pharmacological Correction of Trafficking Defects in ATP-sensitive Potassium Channels Caused by Sulfonylurea Receptor 1 Mutations.
J Biol Chem. 2016 Oct 14;291(42):21971-21983. doi: 10.1074/jbc.M116.749366. Epub 2016 Aug 29.
9
Systemic Administration of Glibenclamide Fails to Achieve Therapeutic Levels in the Brain and Cerebrospinal Fluid of Rodents.
PLoS One. 2015 Jul 30;10(7):e0134476. doi: 10.1371/journal.pone.0134476. eCollection 2015.
10
Structurally distinct ligands rescue biogenesis defects of the KATP channel complex via a converging mechanism.
J Biol Chem. 2015 Mar 20;290(12):7980-91. doi: 10.1074/jbc.M114.634576. Epub 2015 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验