Suppr超能文献

亚甲基四氢叶酸还原酶的多位点磷酸化对叶酸和蛋氨酸代谢的调控。

Regulation of folate and methionine metabolism by multisite phosphorylation of human methylenetetrahydrofolate reductase.

机构信息

Meyer Cancer Center, Weill Cornell Medicine, New York, USA.

Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, USA.

出版信息

Sci Rep. 2019 Mar 12;9(1):4190. doi: 10.1038/s41598-019-40950-7.

Abstract

Methylenetetrahydrofolate reductase (MTHFR) catalyzes the irreversible conversion of 5,10-methylene-tetrahydrofolate (THF) to 5-methyl-THF, thereby committing one-carbon units to the methionine cycle. While MTHFR has long been known to be allosterically inhibited by S-adenosylmethionine (SAM), only relatively recently has N-terminal multisite phosphorylation been shown to provide an additional layer of regulation. In vitro, the multiply phosphorylated form of MTHFR is more sensitive to allosteric inhibition by SAM. Here we sought to investigate the kinases responsible for MTHFR multisite phosphorylation and the physiological function of MTHFR phosphorylation in cells. We identified DYRK1A/2 and GSK3A/B among the kinases that phosphorylate MTHFR. In addition, we found that MTHFR phosphorylation is maintained by adequate cellular SAM levels, which are sensed through the C-terminal SAM binding domain of MTHFR. To understand the function of MTHFR phosphorylation in cells, we generated MTHFR CRISPR knockin mutant lines that effectively abolished MTHFR phosphorylation and compared them with the parental cell lines. Whereas the parental cell lines showed increased 5-methyl-THF production in response to homocysteine treatment, the knockin cell lines had high basal levels of 5-methyl-THF and did not respond to homocysteine treatment. Overall, our results suggest that MTHFR multisite phosphorylation coordinates with SAM binding to inhibit MTHFR activity in cells.

摘要

亚甲基四氢叶酸还原酶(MTHFR)催化 5,10-亚甲基四氢叶酸(THF)不可逆转化为 5-甲基-THF,从而将一碳单位贡献给蛋氨酸循环。虽然 MTHFR 早已被证明是受 S-腺苷甲硫氨酸(SAM)变构抑制的,但最近才发现 N 端多部位磷酸化提供了额外的调节层。在体外,MTHFR 的多磷酸化形式对 SAM 的变构抑制更敏感。在这里,我们试图研究负责 MTHFR 多部位磷酸化的激酶以及细胞中 MTHFR 磷酸化的生理功能。我们鉴定出 DYRK1A/2 和 GSK3A/B 是磷酸化 MTHFR 的激酶之一。此外,我们发现 MTHFR 磷酸化通过细胞内充足的 SAM 水平来维持,而 SAM 水平通过 MTHFR 的 C 端 SAM 结合域来感知。为了了解细胞中 MTHFR 磷酸化的功能,我们生成了有效消除 MTHFR 磷酸化的 MTHFR CRISPR 敲入突变系,并将其与亲本细胞系进行比较。虽然亲本细胞系在同型半胱氨酸处理时表现出 5-甲基-THF 产量增加,但敲入细胞系具有较高的 5-甲基-THF 基础水平,并且对同型半胱氨酸处理没有反应。总体而言,我们的结果表明,MTHFR 多部位磷酸化与 SAM 结合协调,以抑制细胞中的 MTHFR 活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c62e/6414673/cfb1c6865123/41598_2019_40950_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验