Suppr超能文献

脑电图微状态的时间动态可区分情绪和焦虑障碍患者与健康受试者。

EEG Microstates Temporal Dynamics Differentiate Individuals with Mood and Anxiety Disorders From Healthy Subjects.

作者信息

Al Zoubi Obada, Mayeli Ahmad, Tsuchiyagaito Aki, Misaki Masaya, Zotev Vadim, Refai Hazem, Paulus Martin, Bodurka Jerzy

机构信息

Laureate Institute for Brain Research, Tulsa, OK, United States.

Department of Electrical and Computer Engineering, University of Oklahoma, Tulsa, OK, United States.

出版信息

Front Hum Neurosci. 2019 Feb 26;13:56. doi: 10.3389/fnhum.2019.00056. eCollection 2019.

Abstract

Electroencephalography (EEG) measures the brain's electrophysiological spatio-temporal activities with high temporal resolution. Multichannel and broadband analysis of EEG signals is referred to as EEG microstates (EEG-ms) and can characterize such dynamic neuronal activity. EEG-ms have gained much attention due to the increasing evidence of their association with mental activities and large-scale brain networks identified by functional magnetic resonance imaging (fMRI). Spatially independent EEG-ms are quasi-stationary topographies (e.g., stable, lasting a few dozen milliseconds) typically classified into four canonical classes (microstates A through D). They can be identified by clustering EEG signals around EEG global field power (GFP) maxima points. We examined the EEG-ms properties and the dynamics of cohorts of mood and anxiety (MA) disorders subjects ( = 61) and healthy controls (HCs; = 52). In both groups, we found four distinct classes of EEG-ms (A through D), which did not differ among cohorts. This suggests a lack of significant structural cortical abnormalities among cohorts, which would otherwise affect the EEG-ms topographies. However, both cohorts' brain network dynamics significantly varied, as reflected in EEG-ms properties. Compared to HC, the MA cohort features a lower transition probability between EEG-ms B and D and higher transition probability from A to D and from B to C, with a trend towards significance in the average duration of microstate C. Furthermore, we harnessed a recently introduced theoretical approach to analyze the temporal dependencies in EEG-ms. The results revealed that the transition matrices of MA group exhibit higher symmetrical and stationarity properties as compared to HC ones. In addition, we found an elevation in the temporal dependencies among microstates, especially in microstate B for the MA group. The determined alteration in EEG-ms temporal dependencies among the cohorts suggests that brain abnormalities in mood and anxiety disorders reflect aberrant neural dynamics and a temporal dwelling among ceratin brain states (i.e., mood and anxiety disorders subjects have a less dynamicity in switching between different brain states).

摘要

脑电图(EEG)以高时间分辨率测量大脑的电生理时空活动。对EEG信号进行多通道和宽带分析被称为EEG微状态(EEG-ms),它可以表征这种动态神经元活动。由于越来越多的证据表明EEG-ms与精神活动以及功能磁共振成像(fMRI)识别出的大规模脑网络有关联,因此受到了广泛关注。空间独立的EEG-ms是准静态地形图(例如,稳定,持续几十毫秒),通常分为四个典型类别(微状态A至D)。它们可以通过围绕EEG全局场功率(GFP)最大值点对EEG信号进行聚类来识别。我们研究了情绪和焦虑(MA)障碍受试者队列(n = 61)和健康对照(HCs;n = 52)的EEG-ms特性及其动态变化。在两组中,我们都发现了四种不同的EEG-ms类别(A至D),各队列之间没有差异。这表明各队列之间缺乏明显的结构性皮质异常,否则会影响EEG-ms地形图。然而,正如EEG-ms特性所反映的那样,两个队列的脑网络动态变化显著不同。与HC相比,MA队列在EEG-ms B和D之间的转换概率较低,从A到D以及从B到C的转换概率较高,微状态C的平均持续时间有显著趋势。此外,我们采用了一种最近引入的理论方法来分析EEG-ms中的时间依赖性。结果表明,与HC组相比,MA组的转换矩阵表现出更高的对称性和平稳性。此外,我们发现微状态之间的时间依赖性有所增加,尤其是MA组的微状态B。队列之间EEG-ms时间依赖性的确定变化表明,情绪和焦虑障碍中的脑异常反映了异常的神经动力学以及特定脑状态之间的时间停留(即,情绪和焦虑障碍受试者在不同脑状态之间切换的动态性较低)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d527/6399140/fbdb5890f89d/fnhum-13-00056-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验