Boo Gianluca, Leyk Stefan, Fabrikant Sara I, Graf Ramona, Pospischil Andreas
Department of Geography, University of Zurich, Zurich, Switzerland.
Collegium Helveticum, University of Zurich, ETH Zurich, Zurich, Switzerland.
Front Vet Sci. 2019 Feb 26;6:45. doi: 10.3389/fvets.2019.00045. eCollection 2019.
In spite of the potentially groundbreaking environmental sentinel applications, studies of canine cancer data sources are often limited due to undercounting of cancer cases. This source of uncertainty might be further amplified through the process of spatial data aggregation, manifested as part of the modifiable areal unit problem (MAUP). In this study, we explore potential explanatory factors for canine cancer incidence retrieved from the Swiss Canine Cancer Registry (SCCR) in a regression modeling framework. In doing so, we also evaluate differences in statistical performance and associations resulting from a dasymetric refinement of municipal units to their portion of residential land. Our findings document severe underascertainment of cancer cases in the SCCR, which we linked to specific demographic characteristics and reduced use of veterinary care. These explanatory factors result in improved statistical performance when computed using dasymetrically refined units. This suggests that dasymetric mapping should be further tested in geographic correlation studies of canine cancer incidence and in future comparative studies involving human cancers.
尽管犬类癌症数据来源在环境监测应用方面具有潜在的开创性,但由于癌症病例计数不足,对其研究往往受到限制。这种不确定性来源可能会在空间数据聚合过程中进一步放大,这是可修改面积单元问题(MAUP)的一部分。在本研究中,我们在回归建模框架下探索了从瑞士犬类癌症登记处(SCCR)获取的犬类癌症发病率的潜在解释因素。在此过程中,我们还评估了将市政单元细化为其居住用地部分后,统计性能和关联的差异。我们的研究结果表明,SCCR中癌症病例存在严重的漏报情况,我们将其与特定的人口特征和兽医护理使用减少联系起来。当使用面积加权细化单元进行计算时,这些解释因素会提高统计性能。这表明,在犬类癌症发病率的地理相关性研究以及未来涉及人类癌症的比较研究中,应进一步测试面积加权制图法。