Program in Infectious Diseases and Immunology in Global Health, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.
Clin Exp Immunol. 2019 Jul;197(1):36-51. doi: 10.1111/cei.13290. Epub 2019 Apr 1.
Regulatory T (T ) cells represent an essential component of peripheral tolerance. Given their potently immunosuppressive functions that is orchestrated by the lineage-defining transcription factor forkhead box protein 3 (FoxP3), clinical modulation of these cells in autoimmunity and cancer is a promising therapeutic target. However, recent evidence in mice and humans indicates that T cells represent a phenotypically and functionally heterogeneic population. Indeed, both suppressive and non-suppressive T cells exist in human blood that are otherwise indistinguishable from one another using classical T cell markers such as CD25 and FoxP3. Moreover, murine T cells display a degree of plasticity through which they acquire the trafficking pathways needed to home to tissues containing target effector T (T ) cells. However, this plasticity can also result in T cell lineage instability and acquisition of proinflammatory T cell functions. Consequently, these dysfunctional CD4 FoxP3 T cells in human and mouse may fail to maintain peripheral tolerance and instead support immunopathology. The mechanisms driving human T cell dysfunction are largely undefined, and obscured by the scarcity of reliable immunophenotypical markers and the disregard paid to T cell antigen-specificity in functional assays. Here, we review the mechanisms controlling the stability of the FoxP3 T cell lineage phenotype. Particular attention will be paid to the developmental and functional heterogeneity of human T cells, and how abrogating these mechanisms can lead to lineage instability and T cell dysfunction in diseases like immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome, type 1 diabetes, rheumatoid arthritis and cancer.
调节性 T (T ) 细胞是外周耐受的重要组成部分。鉴于其通过谱系定义转录因子叉头框蛋白 3(FoxP3)发挥强大的免疫抑制功能,因此在自身免疫和癌症中对这些细胞进行临床调节是一个很有前途的治疗靶点。然而,最近在小鼠和人类中的证据表明,T 细胞是一个表型和功能上具有异质性的群体。事实上,在人类血液中既存在抑制性 T 细胞也存在非抑制性 T 细胞,而使用经典的 T 细胞标志物(如 CD25 和 FoxP3)则无法将它们彼此区分开来。此外,小鼠 T 细胞表现出一定的可塑性,通过这种可塑性,它们获得了归巢到含有靶效应 T (T ) 细胞的组织的所需迁移途径。然而,这种可塑性也可能导致 T 细胞谱系不稳定和获得促炎 T 细胞功能。因此,人类和小鼠中这些功能失调的 CD4 FoxP3 T 细胞可能无法维持外周耐受,反而支持免疫病理学。驱动人类 T 细胞功能障碍的机制在很大程度上尚未确定,并且由于缺乏可靠的免疫表型标志物以及在功能测定中忽视 T 细胞抗原特异性,这些机制被掩盖了。在这里,我们综述了控制 FoxP3 T 细胞谱系表型稳定性的机制。特别关注人类 T 细胞的发育和功能异质性,以及破坏这些机制如何导致谱系不稳定和 T 细胞功能障碍,如免疫失调多内分泌腺病肠病 X 连锁(IPEX)综合征、1 型糖尿病、类风湿关节炎和癌症。