Suppr超能文献

一个与人类健康和疾病相关的微生物标记基因库,用于利用微生物组数据预测宿主表型。

A repository of microbial marker genes related to human health and diseases for host phenotype prediction using microbiome data.

作者信息

Han Wontack, Ye Yuzhen

机构信息

Computer Science Department, Indiana University, Bloomington, IN 47408, USA.

出版信息

Pac Symp Biocomput. 2019;24:236-247.

Abstract

The microbiome research is going through an evolutionary transition from focusing on the characterization of reference microbiomes associated with different environments/hosts to the translational applications, including using microbiome for disease diagnosis, improving the effcacy of cancer treatments, and prevention of diseases (e.g., using probiotics). Microbial markers have been identified from microbiome data derived from cohorts of patients with different diseases, treatment responsiveness, etc, and often predictors based on these markers were built for predicting host phenotype given a microbiome dataset (e.g., to predict if a person has type 2 diabetes given his or her microbiome data). Unfortunately, these microbial markers and predictors are often not published so are not reusable by others. In this paper, we report the curation of a repository of microbial marker genes and predictors built from these markers for microbiome-based prediction of host phenotype, and a computational pipeline called Mi2P (from Microbiome to Phenotype) for using the repository. As an initial effort, we focus on microbial marker genes related to two diseases, type 2 diabetes and liver cirrhosis, and immunotherapy efficacy for two types of cancer, non-small-cell lung cancer (NSCLC) and renal cell carcinoma (RCC). We characterized the marker genes from metagenomic data using our recently developed subtractive assembly approach. We showed that predictors built from these microbial marker genes can provide fast and reasonably accurate prediction of host phenotype given microbiome data. As understanding and making use of microbiome data (our second genome) is becoming vital as we move forward in this age of precision health and precision medicine, we believe that such a repository will be useful for enabling translational applications of microbiome data.

摘要

微生物组研究正经历着一场从专注于与不同环境/宿主相关的参考微生物组特征描述向转化应用的进化转变,这些转化应用包括利用微生物组进行疾病诊断、提高癌症治疗效果以及预防疾病(例如使用益生菌)。已经从患有不同疾病、治疗反应等的患者队列的微生物组数据中识别出了微生物标志物,并且通常基于这些标志物构建预测因子,以便在给定微生物组数据集的情况下预测宿主表型(例如,根据一个人的微生物组数据预测其是否患有2型糖尿病)。不幸的是,这些微生物标志物和预测因子往往未被发表,因此其他人无法复用。在本文中,我们报告了一个微生物标志物基因库的整理情况以及基于这些标志物构建的用于基于微生物组预测宿主表型的预测因子,还有一个名为Mi2P(从微生物组到表型)的计算流程用于使用该数据库。作为初步工作,我们聚焦于与两种疾病(2型糖尿病和肝硬化)以及两种癌症(非小细胞肺癌(NSCLC)和肾细胞癌(RCC))的免疫治疗效果相关的微生物标志物基因。我们使用我们最近开发的减法组装方法从宏基因组数据中表征了这些标志物基因。我们表明,基于这些微生物标志物基因构建的预测因子能够在给定微生物组数据的情况下快速且合理准确地预测宿主表型。随着我们在这个精准健康和精准医学时代不断前进,理解和利用微生物组数据(我们的第二个基因组)变得至关重要,我们相信这样一个数据库将有助于实现微生物组数据的转化应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24ef/6417824/2c524f719207/nihms-999798-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验