Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China.
Soft Matter. 2019 Apr 10;15(15):3133-3148. doi: 10.1039/c9sm00124g.
Natural biological materials usually adopt functional gradient designs within interfacial regions to fulfil unusual mechanically-challenging demands. Manufacturing analogous gradients to alleviate premature failures for synthetic interfaces has remained challenging until recently, where magnetically-actuated gradient nanocomposites (MA-G-NCs) have emerged as a promising processing technique. The essence of this technique lies in controlling the spatial distribution of nanoreinforcements (usually particles) inside a polymer matrix through a magnetophoresis process. Herein, we present a theory-experiment-combined study on the evolution kinetics and equilibrium distribution of the nanoparticles during the magnetophoresis process and consequently to explore the spatial and temporal tunability of the MA-G-NCs. Using a simplified drift-diffusion theory as the guide, we determine two critical processing parameters for the MA-G-NCs: the applied magnetic field and the actuation duration. By systematically varying these two parameters independently, we experimentally demonstrate that the profile of the nanoparticle distribution inside the MA-G-NCs can be finely tuned both spatially and temporally. In order to quantify the volume fraction of the nanoparticles along the cross section of the MA-G-NCs, we propose a mechanics-based method by site-specifically measuring the local elastic modulus and converting back to the volume fractions based on an established modulus-fraction correlation. The nanoparticle concentration profiles obtained thereby are validated by morphological characterizations and also agree well with theoretical predictions based on the drift-diffusion theory. Our combined results indicate that the magnetophoresis-induced evolution of the nanoparticles follows approximately the drift-diffusion transport process and the gradient profile of the MA-G-NCs is highly controllable and programmable. The presented study not only advances the fundamental understanding of the evolution kinetics of the nanoparticles under the effect of magnetophoresis, but also establishes the critical processing-structure-property relationships for the MA-G-NCs that should guide future development of customized interfaces with desired mechanical and physical property gradients.
天然生物材料通常在界面区域采用功能梯度设计来满足特殊的机械挑战需求。直到最近,制造类似的梯度以减轻合成界面的过早失效仍然具有挑战性,此时磁驱动梯度纳米复合材料(MA-G-NC)作为一种很有前途的加工技术出现了。该技术的本质在于通过磁泳过程控制纳米增强剂(通常为颗粒)在聚合物基质中的空间分布。在这里,我们提出了一个理论-实验相结合的研究,以研究纳米粒子在磁泳过程中的演化动力学和平衡分布,进而探索 MA-G-NC 的时空可调性。我们使用简化的漂移扩散理论作为指导,确定了 MA-G-NC 的两个关键加工参数:施加的磁场和激励持续时间。通过系统地独立改变这两个参数,我们实验证明了 MA-G-NC 内部纳米粒子分布的轮廓可以在空间和时间上进行精细调整。为了定量测量 MA-G-NC 横截面内纳米粒子的体积分数,我们提出了一种基于力学的方法,通过对局部弹性模量进行特定位置的测量,并基于建立的模量-分数相关性转换回体积分数。由此获得的纳米粒子浓度分布通过形态学特征进行验证,并与基于漂移扩散理论的理论预测吻合良好。我们的综合结果表明,磁泳诱导的纳米粒子演化大致遵循漂移扩散输运过程,MA-G-NC 的梯度轮廓具有高度可控性和可编程性。该研究不仅推进了对磁泳作用下纳米粒子演化动力学的基本理解,而且建立了 MA-G-NC 的关键加工-结构-性能关系,这应该为未来具有所需机械和物理性能梯度的定制界面的发展提供指导。