Suppr超能文献

磁泳作用下磁性纳米颗粒分离的统一观点

Unified View of Magnetic Nanoparticle Separation under Magnetophoresis.

作者信息

Leong Sim Siong, Ahmad Zainal, Low Siew Chun, Camacho Juan, Faraudo Jordi, Lim JitKang

机构信息

Department of Petrochemical Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar 31900, Perak, Malaysia.

School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia.

出版信息

Langmuir. 2020 Jul 21;36(28):8033-8055. doi: 10.1021/acs.langmuir.0c00839. Epub 2020 Jul 8.

Abstract

The migration process of magnetic nanoparticles and colloids in solution under the influence of magnetic field gradients, which is also known as magnetophoresis, is an essential step in the separation technology used in various biomedical and engineering applications. Many works have demonstrated that in specific situations, separation can be performed easily with the weak magnetic field gradients created by permanent magnets, a process known as low-gradient magnetic separation (LGMS). Due to the level of complexity involved, it is not possible to understand the observed kinetics of LGMS within the classical view of magnetophoresis. Our experimental and theoretical investigations in the last years unravelled the existence of two novel physical effects that speed up the magnetophoresis kinetics and explain the observed feasibility of LGMS. Those two effects are (i) cooperative magnetophoresis (due to the cooperative motion of strongly interacting particles) and (ii) magnetophoresis-induced convection (fluid dynamics instability originating from inhomogeneous magnetic gradients). In this feature article, we present a unified view of magnetophoresis based on the extensive research done on these effects. We present the physical basis of each effect and also propose a classification of magnetophoresis into four distinct regimes. This classification is based on the range of values of two dimensionless quantities, namely, aggregation parameter * and magnetic Grashof number , which include all of the dependency of LGMS on various physical parameters (such as particle properties, thermodynamic parameters, fluid properties, and magnetic field properties). This analysis provides a holistic view of the classification of transport mechanisms in LGMS, which could be particularly useful in the design of magnetic separators for engineering applications.

摘要

在磁场梯度影响下,磁性纳米颗粒和胶体在溶液中的迁移过程,也就是磁泳,是各种生物医学和工程应用中分离技术的关键步骤。许多研究表明,在特定情况下,利用永久磁铁产生的弱磁场梯度就能轻松实现分离,这一过程称为低梯度磁分离(LGMS)。由于涉及的复杂性,在传统磁泳观点下无法理解观察到的LGMS动力学。我们过去几年的实验和理论研究揭示了两种新的物理效应的存在,它们加速了磁泳动力学并解释了观察到的LGMS的可行性。这两种效应分别是:(i)协同磁泳(由于强相互作用粒子的协同运动)和(ii)磁泳诱导对流(源于不均匀磁梯度的流体动力学不稳定性)。在这篇专题文章中,我们基于对这些效应的广泛研究,给出了磁泳的统一观点。我们阐述了每种效应的物理基础,并提出将磁泳分为四个不同区域的分类方法。这种分类基于两个无量纲量的值的范围,即聚集参数*和磁格拉晓夫数,其中包含了LGMS对各种物理参数(如颗粒性质、热力学参数、流体性质和磁场性质)的所有依赖性。该分析提供了LGMS中传输机制分类的整体视图,这在工程应用的磁分离器设计中可能特别有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验