Suppr超能文献

基于平板电脑的具身会话代理促进退伍军人戒烟:一项可行性研究。

A Tablet Based Embodied Conversational Agent to Promote Smoking Cessation among Veterans: A Feasibility Study.

机构信息

Department of General Internal Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts 02118, USA.

Duke Global Health Institute, Duke University, Durham, NC 27710, USA.

出版信息

J Epidemiol Glob Health. 2018 Dec;8(3-4):225-230. doi: 10.2991/j.jegh.2018.08.104.

Abstract

Embodied Conversational Agent (ECA) offer a new means to support smokers as a virtual coach and motivate them to quit smoking. In this study we assess the feasibility and acceptability of an ECA to support quit smoking ("aka ECA-Q"). ECA-Q, a 14-days program, delivered through Tablet computers, interacts with participants with supporting messages for quit smoking and motivates them to set a quit date. Study participants ( = 6) were Veterans receiving medical care at Boston VA Healthcare System who responded to an open advertisement. Participants completed a survey at baseline and after 14 days follow-up. All participants were satisfied with the ECA program and liked the features of the agent; three out of six participants had set a quit date by the end of the 14 days. Participants reported several positive and less important features of the agent and made suggestions to improve the agent. This study shows that a conversation agent is acceptable to smoking veterans to help them in setting a quit date with an ultimate goal of quit smoking. Insights gained from this study would be useful to redesign the current version of ECA-Q program for a future randomized controlled trial to test the efficacy.

摘要

具身对话代理(ECA)为支持吸烟者作为虚拟教练并激励他们戒烟提供了一种新方法。在这项研究中,我们评估了一种支持戒烟的 ECA(即 ECA-Q)的可行性和可接受性。ECA-Q 是一个为期 14 天的程序,通过平板电脑提供,通过支持戒烟的信息与参与者互动,并激励他们设定戒烟日期。研究参与者(=6)是在波士顿退伍军人医疗保健系统接受医疗护理的退伍军人,他们对一则公开广告做出了回应。参与者在基线和 14 天随访后完成了一项调查。所有参与者都对 ECA 程序感到满意,并喜欢代理的功能;六名参与者中有三名在 14 天结束时设定了戒烟日期。参与者报告了代理的几个积极但不太重要的功能,并提出了改进代理的建议。这项研究表明,对话代理对吸烟的退伍军人是可以接受的,可以帮助他们设定戒烟日期,最终目标是戒烟。从这项研究中获得的见解将有助于重新设计当前版本的 ECA-Q 程序,以便未来进行随机对照试验以测试其疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf1/7377562/d89f4fb422e3/JEGH_8_3-4_225-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验