Suppr超能文献

噬菌体T4的脱氧胞苷酸羟甲基化酶与其辅因子和底物三元复合物结构揭示的胞嘧啶修饰机制

A cytosine modification mechanism revealed by the structure of a ternary complex of deoxycytidylate hydroxymethylase from bacteriophage T4 with its cofactor and substrate.

作者信息

Park Si Hoon, Suh Se Won, Song Hyun Kyu

机构信息

Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.

Departments of Chemistry, Seoul National University, Kwanak-ro 1, Kwanak-gu, Seoul 08826, Republic of Korea.

出版信息

IUCrJ. 2019 Jan 24;6(Pt 2):206-217. doi: 10.1107/S2052252518018274. eCollection 2019 Mar 1.

Abstract

To protect viral DNA against the host bacterial restriction system, bacterio-phages utilize a special modification system - hydroxymethylation - in which dCMP hydroxymethylase (dCH) converts dCMP to 5-hydroxymethyl-dCMP (5hm-dCMP) using 5,10-methylenetetrahydrofolate as a cofactor. Despite shared similarity with thymidylate synthase (TS), dCH catalyzes hydroxylation through an exocyclic methylene intermediate during the last step, which is different from the hydride transfer that occurs with TS. In contrast to the extensively studied TS, the hydroxymethylation mechanism of a cytosine base is not well understood due to the lack of a ternary complex structure of dCH in the presence of both its substrate and cofactor. This paper reports the crystal structure of the ternary complex of dCH from bacteriophage T4 (T4dCH) with dCMP and tetrahydrofolate at 1.9 Å resolution. The authors found key residues of T4dCH for accommodating the cofactor without a C-terminal tail, an optimized network of ordered water molecules and a hydrophobic gating mechanism for cofactor regulation. In combination with biochemical data on structure-based mutants, key residues within T4dCH and a substrate water molecule for hydroxymethylation were identified. Based on these results, a complete enzyme mechanism of dCH and signature residues that can identify dCH enzymes within the TS family have been proposed. These findings provide a fundamental basis for understanding the pyrimidine modification system.

摘要

为保护病毒DNA免受宿主细菌限制系统的影响,噬菌体利用一种特殊的修饰系统——羟甲基化,其中dCMP羟甲基化酶(dCH)以5,10-亚甲基四氢叶酸作为辅因子,将dCMP转化为5-羟甲基-dCMP(5hm-dCMP)。尽管与胸苷酸合酶(TS)有相似之处,但dCH在最后一步通过环外亚甲基中间体催化羟基化,这与TS发生的氢化物转移不同。与经过广泛研究的TS不同,由于缺乏dCH在其底物和辅因子存在下的三元复合物结构,胞嘧啶碱基的羟甲基化机制尚未得到很好的理解。本文报道了噬菌体T4的dCH(T4dCH)与dCMP和四氢叶酸的三元复合物的晶体结构,分辨率为1.9 Å。作者发现了T4dCH中用于容纳没有C末端尾巴的辅因子的关键残基、有序水分子的优化网络以及用于辅因子调节的疏水门控机制。结合基于结构的突变体的生化数据,确定了T4dCH内的关键残基和用于羟甲基化的底物水分子。基于这些结果,提出了dCH的完整酶机制以及可在TS家族中识别dCH酶的特征残基。这些发现为理解嘧啶修饰系统提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ba2/6400193/04a088546f67/m-06-00206-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验