Suppr超能文献

骨肉瘤转移风险评分模型。

A risk score model for the prediction of osteosarcoma metastasis.

机构信息

Surgeon of Orthopedics Department II First Hospital of Qin Huangdao China.

Baotou Medical College China.

出版信息

FEBS Open Bio. 2019 Feb 2;9(3):519-526. doi: 10.1002/2211-5463.12592. eCollection 2019 Mar.

Abstract

Osteosarcoma is the most common primary solid malignancy of the bone, and its high mortality usually correlates with early metastasis. In this study, we developed a risk score model to help predict metastasis at the time of diagnosis. We downloaded and mined four expression profile datasets associated with osteosarcoma metastasis from the Gene Expression Omnibus. After data normalization, we performed LASSO logistic regression analysis together with 10-fold cross validation using the GSE21257 dataset. A combination of eight genes (,,,,,, and ) were identified as being associated with osteosarcoma metastasis. These genes were put into a gene risk score model, and the prediction efficiency of the model was then validated using three independent datasets (GSE33383, GSE66673, and GSE49003) by plotting receiver operating characteristic curves. The expression levels of the eight genes in all datasets were shown as heatmaps, and gene ontology gene annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed. These eight genes play a role in cancer-related biological processes, such as apoptosis and biosynthetic processes. Our results may aid in elucidating the possible mechanisms of osteosarcoma metastasis, and may help to facilitate the individual management of patients with osteosarcoma after treatment.

摘要

骨肉瘤是最常见的原发性骨恶性实体瘤,其高死亡率通常与早期转移相关。在本研究中,我们开发了一个风险评分模型,以帮助预测诊断时的转移。我们从基因表达综合数据库中下载并挖掘了四个与骨肉瘤转移相关的表达谱数据集。在数据归一化后,我们使用 GSE21257 数据集进行 LASSO 逻辑回归分析和 10 倍交叉验证。确定了 8 个基因(、、、、、、和)与骨肉瘤转移有关。这些基因被纳入基因风险评分模型,然后使用三个独立数据集(GSE33383、GSE66673 和 GSE49003)通过绘制接收器操作特征曲线来验证模型的预测效率。所有数据集的 8 个基因的表达水平均以热图表示,并进行了基因本体基因注释和京都基因与基因组百科全书通路富集分析。这 8 个基因在癌症相关的生物过程中发挥作用,如细胞凋亡和生物合成过程。我们的研究结果可能有助于阐明骨肉瘤转移的可能机制,并可能有助于在治疗后对骨肉瘤患者进行个体化管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6193/6396159/7c5b03ac83c4/FEB4-9-519-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验