The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom.
The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom.
Mol Plant. 2020 Jul 6;13(7):1047-1062. doi: 10.1016/j.molp.2020.04.011. Epub 2020 May 4.
Current cell-wall models assume no covalent bonding between cellulose and hemicelluloses such as xyloglucan or mixed-linkage β-d-glucan (MLG). However, Equisetum hetero-trans-β-glucanase (HTG) grafts cellulose onto xyloglucan oligosaccharides (XGOs) - and, we now show, xyloglucan polysaccharide - in vitro, thus exhibiting CXE (cellulose:xyloglucan endotransglucosylase) activity. In addition, HTG also catalyzes MLG-to-XGO bonding (MXE activity). In this study, we explored the CXE action of HTG in native plant cell walls and tested whether expansin exposes cellulose to HTG by disrupting hydrogen bonds. To quantify and visualize CXE and MXE action, we assayed the sequential release of HTG products from cell walls pre-labeled with substrate mimics. We demonstrated covalent cellulose-xyloglucan bonding in plant cell walls and showed that CXE and MXE action was up to 15% and 60% of total transglucanase action, respectively, and peaked in aging, strengthening tissues: CXE in xylem and cells bordering intercellular canals and MXE in sclerenchyma. Recombinant bacterial expansin (EXLX1) strongly augmented CXE activity in vitro. CXE and MXE action in living Equisetum structural tissues potentially strengthens stems, while expansin might augment the HTG-catalyzed CXE reaction, thereby allowing efficient CXE action in muro. Our methods will enable surveys for comparable reactions throughout the plant kingdom. Furthermore, engineering similar hetero-polymer formation into angiosperm crop plants may improve certain agronomic traits such as lodging tolerance.
目前的细胞壁模型假设纤维素与半纤维素(如木葡聚糖或混合连接β-D-葡聚糖(MLG))之间不存在共价键。然而,木贼属异源-β-葡聚糖酶(HTG)在体外将纤维素接枝到木葡聚糖低聚糖(XGOs)-并且,我们现在表明,木葡聚糖多糖-从而表现出 CXE(纤维素:木葡聚糖内切转葡糖苷酶)活性。此外,HTG 还催化 MLG 与 XGO 的键合(MXE 活性)。在这项研究中,我们探索了 HTG 在天然植物细胞壁中的 CXE 作用,并测试了扩展蛋白是否通过破坏氢键使纤维素暴露于 HTG。为了定量和可视化 CXE 和 MXE 作用,我们检测了预先用底物模拟物标记的细胞壁中 HTG 产物的顺序释放。我们证明了植物细胞壁中纤维素与木葡聚糖的共价键合,并表明 CXE 和 MXE 作用分别占总转葡糖苷酶作用的 15%和 60%,并且在老化、增强组织中达到峰值:在木质部和细胞边界细胞间腔的 CXE 和在厚壁组织中的 MXE。重组细菌扩展蛋白(EXLX1)在体外强烈增强了 CXE 活性。在活体木贼属结构组织中 CXE 和 MXE 作用可能增强茎的强度,而扩展蛋白可能增强 HTG 催化的 CXE 反应,从而允许在壁内进行有效的 CXE 反应。我们的方法将能够在整个植物界中调查类似的反应。此外,将类似的异质聚合物形成工程化到被子植物作物中可能会改善某些农艺性状,例如耐倒伏性。